• 제목/요약/키워드: NO and cytokines production

검색결과 767건 처리시간 0.053초

RAW264.7 대식세포에서 Citrus platymamma의 iNOS, COX-2, 염증성 사이토카인 발현 억제 효과 (Citrus platymamma inhibits the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW264.7 macrophage)

  • 김상숙;박경진;안현주;최영훈
    • 한국식품저장유통학회지
    • /
    • 제23권7호
    • /
    • pp.1026-1032
    • /
    • 2016
  • 시기별 병귤 추출물의 항산화 활성은 시기적으로 미숙과 시기인 9월에 가장 높았으며, 이 시기에 총 폴리페놀 함량이 가장 높았다. 특히 rutin, hesperidin, nobiletin의 함량이 높았으며, 이는 항염 활성에 영향을 미치는 것으로 여겨진다. 항염 활성에서는 NO의 생성을 억제하였으며 염증성 cytokine인 TNF-${\alpha}$의 생성 억제 활성이 가장 높았다. 또한 NO 생성을 억제하는 단백질로 알려진 iNOS 단백질의 발현 역시 억제하는 것을 확인 할 수 있었다. 항염 활성에 영향을 미칠 것으로 여겨지는 nobiletin 함량의 경우 12월에 70%이상 감소하는 것을 확인할 수 있었다. 이러한 시기별 플라보노이드 함량 분석결과는 병귤을 천연 소재로 활용하기 위한 수확시기를 확립할 수 있을 것으로 여겨진다.

율초(葎草)가 항염 효과에 미치는 영향 (Anti-inflammaory effects of the MeOH extract of Humulus japonicus in vivo)

  • 황순이;조미정;김상찬;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제22권2호
    • /
    • pp.92-103
    • /
    • 2009
  • Objectives : The present study was examined to evaluate the anti-inflammatory effects of the Humulus japonicus MeOH extracts (HJE) in vivo. Methods : The effects of HJE on anti-inflammation were measured by production of NO, iNOS (inducible Nitric Oxide Synthase), COX-2, I$\kappa$B$\alpha$ (Inhibitor kappa B alpha), NF$\kappa$B (Nuclear Factor kappa B), TNF-$\alpha$ (Tumor Necrosis Factor-alpha) and IL-1$\beta$ (Interleukin-1$\beta$), IL-6 in Raw 264.7 macrophage cells stimulated with LPS. Results : 1. All concentrations of HJE(0.03 and 0.10 mg/ml) had no significant cytotoxicity in Raw 264.7 cell during the entire experimental period. 2. The level of NO and iNOS in culture medium was dramatically increased by LPS application. However, these increases were dose-dependently(0.03 and 0.10 mg/ml) attenuated by treatment with HJE. 3. HJE extract reduced PGE2 levels in a dose-dependent manner as a consequence of inhibition of COX-2 protein expression in Raw 264.7 macrophage cells stimulated with LPS. 4. 0.10 mg/ml HJE significantly inhibited the phosphorylation of I$\kappa$B$\alpha$ indicating the suppression of NF-$\kappa$B pathway in Raw 264.7 macrophage cells stimulated with LPS. 5. 0.10 mg/ml HJE significantly inhibited the production of TNF-$\alpha$ in Raw 264.7 macrophage cells stimulated with LPS. 6. All concentrations of HJE significantly inhibited the production of IL-1$\beta$, IL-6 in Raw 264.7 macrophage cells stimulated with LPS. Conclusions : These results provide evidences that therapeutic effect of HJE on heat syndrome, especially due to the acute inflammation, are partly due to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of p-I$\kappa$B$\alpha$. Moreover, it suggests that the mechanism of action of HJE comes from the suppression of inflammatory mediators, such as NO, PGE$_2$ and pro-inflammatory cytokines.

  • PDF

참취에서 분리한 다당의 면역자극 활성 (Immunostimulating Activites of Polysaccharide Fractions isolated from Aster scaber Thunb.)

  • 성수경;이영경;조장원;김은영;강동주;홍희도
    • 한국식품영양학회지
    • /
    • 제28권5호
    • /
    • pp.821-828
    • /
    • 2015
  • ASW0 is a polysaccharide derived from the perennial herb Aster scaber Thunberg. We isolated ASW0, a fraction of crude polysaccharide, by means of ethanol precipitation and dialysis after hot water extraction to investigate its physicochemical properties and immunostimulatory effects. ASW0 contains neutral sugar (45.7%), acidic sugar (51.6%), protein (2.3%), and 2-keto-3-deoxy-D-manno-octonate (KDO) (0.4%). The neutral sugar in ASW0 (in mole percentage) was mainly composed of arabinose (34.5 mol%), glucose (31.1 mol%), galactose (14.9 mol%), and rhamnose (8.1 mol%), which are characteristic of pectic polysaccharides. ASW0 also contained small amounts of xylose, mannose, and fucose. The anti-complementary activity of ASW-0 was similar to that of polysaccharide K (used as positive control). ASW0 exhibited no cytotoxicity in RAW 264.7 macrophages and dramatically increased nitric oxide (NO) production in a dose dependent manner ($0.3{\sim}30{\mu}g/mL$). Also, macrophages stimulated with ASW0 showed enhanced production of immunostimulatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha ($TNF-{\alpha}$) in a dose dependent manner. These results suggest that the ASW0 have a potent immunostimulatory effect and can be used as a natural immune health ingredient.

Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과 (Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells)

  • 박승재;신지선;조웅;조영욱;안은미;백남인;이경태
    • 생약학회지
    • /
    • 제39권2호
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

잔대 추출물의 항염 및 항천식 효과 (Anti-Inflammatory and Anti-Allergic Effects of Adenophora triphylla var. japonica Extract)

  • 장환희;김미주;조수연;김정봉;이성현;이영민
    • 동아시아식생활학회지
    • /
    • 제25권5호
    • /
    • pp.813-821
    • /
    • 2015
  • Asthma is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. The purpose of the present study was to evaluate the anti-inflammatory and anti-asthma effects of Adenophora triphylla var. japonica extracts. We investigated the molecular mechanism underlying the effects of 80% ethanol extracts (AE) of A. triphylla on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. AE treatment inhibited pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-6 as well as nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. In particular, NO and pro-inflammatory cytokine production was suppressed more effectively by aerial parts (AE-A) than roots (AE-R) of A. triphylla. Quantitative RT-PCR assay showed that AE reduced mRNA levels of iNOS and COX-2. We also evaluated the anti-asthmatic effects of AE-A in an ovalbumin (OVA)-induced BALB/c mouse model. AE-A supplementation significantly reduced the amounts of airway eosinophils, IL-4 and IL-13 levels in BALF, and IgE levels in serum as compared with untreated, OVA-induced mice. These results suggest that AE-A can be considered as a therapeutic agent to potentially relieve asthma.

S. abortus 유래 LPS와 E. coli 유래 LPS에 의한 패혈증성 쇽 유도 작용 비교 (Differential Induction of Septic Shock by Lipopolysacchrides from E. coli and S. abortus)

  • 조재열;유은숙
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.44-50
    • /
    • 2007
  • Acute septic shock is one of inflammatory diseases mediated by pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. In this study, we examined the pathological difference and mechanism of lipopolysaccharides isolated from E. coli (E-LPS) or S. abortus (S-LPS) on inducing acute septic shock in ICR mouse. All mice were died by intraperitoneal treatment of S-LPS with 0.75 mg/kg, whereas E-LPS treated with even 3 mg/kg only showed 30% of mice lethal, indicating that S-LPS may be more feasible in triggering a strong septic shock condition. The secretion pattern of TNF-${\alpha}$, a critical pro-inflammatory cytokine in septic shock condition, was also distinct between E-LPS- and S-LPS-treated groups. Thus, S-LPS strikingly increased serum level of TNF-${\alpha}$ (6 ng/ml) at 1 h, while E-LPS just displayed at 2 ng/ml level. However the interaction of S-LPS with LPS receptor toll like receptor (TLR)-4, was not stronger than that of E-LPS, according to experiments with macrophage cell line RAW264.7 cells. Thus, E-LPS rather than S-LPS strongly enhanced the production of TNF-${\alpha}$. Interestingly, S-LPS more strongly up-regulated splenocyte proliferation, compared to E-LPS group, whereas there was no difference between S- or E-LPS treated groups in proliferation of Balb/c- or C57BL/6-originated splenic lymphocytes. Therefore, our data suggest that S-LPS is a more active endotoxin and that the strong septic shock-inducing effect of S-LPS seems due to the enhancement of early TNF-${\alpha}$ production and S-LPS-sensitive lymphocyte proliferation.

Inhibitory Effects of Fermented Gastrodia elata on High Glucose-induced NO and IL-8 Production in Human Umbilical Vein Endothelial Cells

  • Kwon, Se-Uk;Jeon, Sung-Bong;Xin, Mingje;Kim, Jun-Ho;Im, Ji-Young;Cha, Ji-Yun;Jee, Ho-Kyun;Lee, Oh-Gu;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • 제18권4호
    • /
    • pp.266-272
    • /
    • 2012
  • Hyperglycemia or high glucose (HG), is the hallmark of diabetes, known to induce oxidative stress, release of chemokines, and cytokines, which confer endothelial cell damage. On the other hand, microbial transformation of organic materials often leads to certain changes in their product structures which could enhance their biological activities. The aim of this study was to investigate the beneficial effects of fermented Gastrodia elata (FGE) in HG induced human umbilical vein endothelial cells (HUVECs) dysfunction. GE, fermented by Saccharomyces cerevisiae, which has an extensive history of safe use, exhibited higher phenolic compounds content than those of Gastrodia elata (GE). The HG-induced production of nitric oxide (NO) and interleukin-8 (IL-8) were significantly attenuated by FGE pretreatment to the cells, in a concentration dependent manner. In addition, FGE showed marked activity in free radical scavenging. These results suggest that FGE possesses beneficial effects in protecting against the oxidative stress, and inflammatory conditions in endothelial cells, caused by HG.

Lipopolysaccharide로 유도한 RAW 264.7 세포에 대한 Meyerozyma guilliermondii YJ34-2와 Rhodotorula graminis YJ36-1의 항염활성과 Nitric Oxide 생성 저해물질의 생산 (Anti-inflammatory Activity of Wild Yeasts, Meyerozyma guilliermondii YJ34-2 and Rhodotorula graminis YJ36-1, on Lipopolysaccharide-induced Nitric Oxide in RAW 264.7 Cells Through the Inhibition of Nitric Oxide and Cytotoxic Effects)

  • 배상민;한상민;이종수
    • 한국균학회지
    • /
    • 제45권4호
    • /
    • pp.336-344
    • /
    • 2017
  • 본 연구에서는 우리나라 주요 산과 섬에서 분리한 비병원성 야생효모들 중 항염 효과가 우수했던 Meyerozyma guilliermondii YJ34-2와 Rhodotorula graminis YJ36-1의 무세포 추출물들을 제조하여 대식세포 계열 RAW 264.7 세포에 대한 이들의 NO 생성 저해활성과 세포독성을 조사하였다. NO 생성 저해활성은 농도 의존적으로 높아 M. guilliermondii YJ34-2와 R. graminis YJ36-1 무세포 추출물을 1,000 mg/mL 처리 시 각각 51.6%와 81.4%를 보여 가장 높았고 RAW 264.7 세포에 대한 세포 생존율도 1,000 mg/mL 처리시 각각 88.4% (${\pm}3.1$)와 77.1% (${\pm}0.3$)로 가장 높았다. 두 효모들의 무세포 추출물 처리에 따른 prostaglandin $E_2$ 생성량은 농도 의존적으로 감소하여 각각의 무세포 추출물을 1,000 mg/mL 처리했을 때, tumor necrosis factor $(TNF)-{\alpha}$ 생성량이 59.2 (${\pm}43.1$), 73.2 (${\pm}38.1$)%로 감소하였고 prostaglandin $E_2$의 생성량도 52.8 (${\pm}1.9$), 71.2 (${\pm}3.7$)%로 감소하여 이 두 효모들의 항균활성을 검증할 수 있었다. 두 효모들의 NO 생성 저해물질 최적 생산조건을 조사한 결과 M. guilliermondii YJ34-2를 yeast extract-peptone- dextrose (YPD) 배지에 접종하여 $30^{\circ}C$에서 24시간 배양하여 얻은 무세포 추출물이 가장 높은 51.6 (${\pm}0.3$)%의 NO 생성 저해율을 보였고 R. graminis YJ36-1를 YPD 배지에 접종하여 $25^{\circ}C$에서 24시간 배양하였을 때 81.4 (${\pm}1.3$)%의 가장 높은 NO 생성 저해활성을 보였다.

흰쥐 뇌에서의 Lipopolysaccharide-유도 산화적 스트레스에 대한 OQ21과 Melatonin의 작용 (Effect of OQ21 and Melatonin on Lipopolysaccharide-Induced Oxidative Stress in Rat Brain)

  • 배미경;최신규;고문정;하헌주;김화정
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.347-354
    • /
    • 2005
  • Lipopolysaccharide (LPS) induces synthesis of several inflammatory cytokines and nitric oxide (NO). NO in brain is involved not only in the regulation of important metabolic pathways via intracellular cyclic GMP-dependent path­ways, but also in neurotoxic damage by reacting with superoxide ion leading to form peroxynitrite radical. Oxidative stress has suggested to be related to the inhibition of NO synthase/cyclic GMP pathway. OQ21 is a new fluorinated quinone compound that is recently known to have inhibitory effects on both NO synthase (NOS) and guanylyl cyclase (GC). In this study, we examined effects of OQ21, other known NOS or GC inhibitors, or an antioxidant, melatonin, on the oxidative stress produced by LPS in rat brain. Oxidative stress was observed by using the 2',7'-dichlorofluorescin diacetate to measure intra-cellular reactive oxygen species (ROS) production and by measuring the formation of thiobarbituric acid reactive substances to measure lipid peroxidation. LPS induced significant increase in both ROS produdction and lipid peroxidation in all brain regions tested (striatum, hippocampus and cortex), which were dissected 6hr after intraperitoneal administration of LPS to rats. Direct striatal injection of two NOS inhibitors, N-nitro-L-arginine methyl ester and diphenyleneiodonium, or a GC inhibitor, IH-[1,2,4]oxadiazolo[4,3-a]quinoxaline-l-one, produced no significant ROS increase. However, OQ21 enhanced ROS formation in striatal tissues from LPS-treated rats. Melatonin decreased LPS-induced ROS formation and decreased ROS formation increased by OQ21 in striatum of LPS-treated rats.

방기(防己) 추출물이 LPS로 유도된 Raw 264.7 cell에서의 $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 및 Nitric Oxide Production에 미치는 영향 (Inhibitory Effect of Stephanniae Tetrandrae Radix Extract on $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 and Nitric Oxide Production in Lipopolysaccharide - Activated RAW 264.7 Cells)

  • 김대희;이종록;변성희;신상우;권영규;김상찬
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.902-908
    • /
    • 2006
  • Tetrandra is the root of Stephania tetrandra 5. Moore (family Menispermaceae), or of Aristolochia frangchi Wu (family Aristolochiaceae). It is a Differ-flavored and cold-property herb acting on the urinary bladder, kidney and spleen meridiands. Known biological effects of this herb are expelling wind to relieve pain and inducing diuresis to alleviate edema. This herb also has anti-inflammatory and anti-hypersensitivity actions. Recent studies have shown that Stephanniae Tetrandrae Radix has antimicrobial effects, namely, a protective effect on acute renal failure induce by gentamicin sulfate and a suppressive effect against clostridium perfringes. However, there is a lack of studies concerning the immunological activities of this herb. The present study was conducted to evaluate the immunological activities of Stephanniae Tetrandrae Radix on the regulatory mechanisms of cytokines and nitric oxide (NO) in Raw 264.7 cells. Cell viability was measured by MTT assay after the treatment of Stephanniae Tetrandrae Radix extract (STRE) and NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidences that STRE inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$, $interleukin-1{\beta}(IL-1{\beta})$ and interleukin-6 (IL-6) in Raw 264.7 cells activated with lipopolysaccharide (LPS). These findings showed that STRE could produce some anti-inflammatory effects which might play a role in adjunctive therapy in Gram-negative bacterial infections.