• 제목/요약/키워드: NO and cytokines production

검색결과 771건 처리시간 0.049초

Flaviviruses Induce Pro-inflammatory and Anti-inflammatory Cytokines from Murine Dendritic Cells through MyD88-dependent Pathway

  • Aleyas, Abi G.;George, Junu A.;Han, Young-Woo;Kim, Hye-Kyung;Kim, Seon-Ju;Yoon, Hyun-A;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • 제7권2호
    • /
    • pp.66-74
    • /
    • 2007
  • Background: The genus Flavivirus consists of many emerging arboviruses, including Dengue virus (DV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). Effective preventive vaccines remain elusive for these diseases. Mice are being increasingly used as the animal model for vaccine studies. However, the pathogenic mechanisms of these viruses are not clearly understood. Here, we investigated the interaction of DV and JEV with murine bone marrow-derived dendritic cells (bmDC). Methods: ELISA and FACS analysis were employed to investigate cytokine production and phenotypic changes of DCs obtained from bone marrow following flavivirus infection. Results: We observed that these viruses altered the cytokine profile and phenotypic markers. Although both viruses belong to the same family, JEV-infected bmDC produced anti-inflammatory cytokine (IL-10) along with pro-inflammatory cytokines, whereas DV infection induced production of large amounts of pro-inflammatory cytokines (IL-6 and TNF-${\alpha}$) and no IL-10 from murine bmDCs. Both flaviviruses also up-regulated the expression of co-stimulatory molecules such as CD40, CD80 and CD86. JEV infection led to down-regulation of MHC II expression on infected bmDCs. We also found that cytokine production induced by JEV and DV is MyD88-dependent. This dependence was complete for DV, as cytokine production was completely abolished in the absence of MyD88. With regard to JEV, the absence of MyD88 led to a partial reduction in cytokine levels. Conclusion: Here, we demonstrate that MyD88 plays an important role in the pathogenesis of flaviviruses. Our study provides insight into the pathogenesis of JEV and DV in the murine model.

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.

Lipopolysaccharide로 유도된 RAW 264.7 세포에 대한 참치심장 물 추출물의 항염증 효과 (Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells)

  • 김민지;배난영;김꽃봉우리;박지혜;박선희;조영제;안동현
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.326-331
    • /
    • 2015
  • The anti-inflammatory effect of tuna heart water extract (THWE) was investigated using lipopolysaccharide-induced inflammatory response in this study. Anti-inflammatory effect was detected by the cell proliferation and the production levels of nitric oxide, pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-$1{\beta}$, and tumor necrosis factor-alpha. As a result, there were no cytotoxic effects on proliferation of macrophages treated with THWE compared to the control. The production of pro-inflammatory cytokines was remarkably suppressed compared with that of the LPS only group. These results suggest that THWE exerts the anti-inflammatory property by inhibiting production of inflammatory factors and may be a potential material for anti-inflammatory therapy.

Inhibitory Effect of Chan-Su on the Secretion of PGE2 and NO in LPS-stimulated BV2 Microglial Cells

  • Kim, Min-Hee;Lyu, Ji-Hyo;Lyu, Sun-Ae;Hong, Sang-Hoon;Kim, Won-Il;Yoon, Hwa-Jung;Ko, Woo-Shin
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1315-1321
    • /
    • 2008
  • 본 논문은 오랫동안 민간요법으로 염증치료에 사용되어오던 섬수가 lipopolysaccharide(LPS)-자극된 BV2 소교 세포의 nitric oxide(NO) 분비에 미치는 효과에 대해 연구한 내용이다. 실험 결과 섬수는 세포 생존력에 대한 영향 없이 BV2 소교 세포에서 NO 분비를 억제시켰고, nitric oxide synthase (iNOS) 단백질도 감소시켰다. 또한 섬수는 prostaglandin E2 (PGE2) 생산 및 cyclooxygenase (COX)-2 발현을 저지하였고, proinflammatory cytokines과 ${IkB-\alpha}$감소를 억제시켰다. 따라서 섬수가 $I{\kappa}B-{\alpha}$감소를 억제함으로써 NO 합성을 저해하여 항염증작용을 할 수 있다는 내용이다.

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제17권1호
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

생약 추출물의 RAW 264.7 세포를 이용한 면역증강 효과 (Immune Enhancing Effect of Medicinal Herb Extracts on a RAW 264.7 Macrophage Cell Line)

  • 유아름;박호영;최인욱;박용곤;홍희도;최희돈
    • 한국식품영양과학회지
    • /
    • 제41권11호
    • /
    • pp.1521-1527
    • /
    • 2012
  • 본 연구에서 12종류의 생약재 중 대식세포를 활성화시켜 NO 생성능이 높은 감초, 건지황, 당귀, 도라지, 목천료 5종의 생약재를 선별하였다. 선별된 5종의 생약추출물의 성분을 실험한 결과 단백질, 다당 물질의 함유량이 감초(58.1%), 건지황(90.4%), 당귀(87.4%), 도라지(41.3%), 목천료(85.7%)로 대부분 고분자 물질이 함유되어 있는 것으로 나타났다. 생약추출물이 대식세포를 활성화시켜 면역을 증진시키는 효과를 알아보기 위해 RAW 264.7세포와 T세포를 이용하여 면역활성능 관련 지표를 측정한 결과 5종의 생약재를 RAW 264.7 세포에 처리하였을 때 면역 활성의 지표가 되는 NO, cytokine(TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-10)의 생성이 추출물을 처리하지 않은 대조군에 비해 증가되었고, Molt-4 세포에 처리하였을 때 대조군에 비해 세포가 증식되었다. 이와 같은 결과는 고분자 물질인 단백질과 다당으로 이루어진 생약추출물을 섭취 시 외부로부터 침입한 항원이 들어오기 이전에 면역세포를 자극하여 활성을 증가시켜 면역매개물질을 생성하여 인체의 비특이적 면역반응을 증가시킴으로써 항원을 공격, 제거하는 등의 작용을 통해 자연 면역반응에 있어 중요한 역할을 할 수 있을 것으로 보인다.

Involvement of Nitric Oxide in UVB-induced pigmentation

  • Horikoshi, Toshio;Sasaki, Minoru;Nakahara, Michio;Uchiwa, Hideyo;Miyachi, Yoshiki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.205-208
    • /
    • 2002
  • Nitric oxide (NO) is a newly described transmitter involved with cell to cell communication that is generated in biologic tissues by specific types of nitric oxide synthase (NOS), which metabolize L-arginine and molecular oxygen to citrulline and nitric oxide. In the skin. NO has been reported to play an important role in such diseases as psoriasis, atopic dermatitis, and contact dermatitis, as well as act as an important modulator in UVB-induced erythema. Ultraviolet B irradiation to the skin evokes an increase in NO production in the epidermis through two pathways; induction of inducible NOS, mediated by inflammatory cytokines, and elevation of constitutive neuronal NOS activity. In a cell culture system, it has been demonstrated that NO functions as a melanogen after being produced in keratinocytes in response to UVB-irradiation. NO-stimulated melanogenesis in melanocytes is mediated by the cGMP/PKG pathway. In this study, up-regulation of tyrosinase gene expression by NO-stimulation and the involvement of NO in UVB-induced pigmentation were examined. In NO-induced melanogenesis, protein synthesis and tyrosinase activity increased along with an up-regulation of tyrosinase gene expression. In an animal model, UVB-induced pigmentation in skin was suppressed by sequential daily treatments with a specific inhibitor of NOS. Thus, NO plays an important role in UVB-induced pigmentation, where its function as a melanogen is considered to be one of the mechanisms. Together with its role in the development of erythema, NO contributes to the total protective response of skin against UVB-irradiation.

  • PDF

대식세포 내에서의 홍화자 추출물의 항염증 활성 (Anti-Inflammatory Activity of Carthamus tinctorious Seed Extracts in Raw 264.7 cells)

  • 김동희;황은영;손준호
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.55-62
    • /
    • 2013
  • 본 연구에서는 홍화자 추출물이 항염증에 대한 실험연구가 이루어져 있지 않은 것에 착안하여 LPS에 의해 활성화된 대식세포로부터 유도되는 염증반응에 대한 억제효과를 조사하였다. 홍화자 추출물을 이용하여 피부 염증에 대하여 연구를 하였다. 산화질소와 cytokine의 생산은 면역세포의 대표적인 염증인자이다. 세포는 LPS 처리 후 한 시간 뒤에 홍화자 추출물을 처리를 하였다. 세포 독성이 나타나지 않는 농도인 5, 10, 25 및 50 ${\mu}g/ml$를 사용하였다. 홍화자의 에틸아세테이트 분획물은 NO, $PGE_2$, TNF-${\alpha}$, IL-$1{\beta}$, IL-6, iNOS, COX-2의 생성을 저해 시켰다. $PGE_2$는 50 ${\mu}g/ml$의 농도에서 60%에 가까운 저해율을 나타내었다. iNOS와 COX-2 역시 ${\mu}g/ml$의 농도에서 각각 54%, 65%가 저해가 되었다. 게다가 홍화자 에틸아세테이트 분획물은 염증성 사이토카인인 TNF-${\alpha}$, IL-$1{\beta}$, IL-6의 생성을 감소 시켰다. 이러한 결과로 홍화자 추출물은 염증 예방과 치료에 효과적임을 확인 할 수 있었다.

보중치습탕이 3T3-L1 성숙지방세포의 염증성 아디포카인의 생산 및 MAPK 신호전달에 미치는 영향 (Effects of Bojungchiseub-tang on the Production of Inflammatory Adipokine and MAPK Signaling in 3T3-L1 Mature Adipocytes)

  • 이수정;김원일;강경화
    • 동의생리병리학회지
    • /
    • 제28권5호
    • /
    • pp.486-493
    • /
    • 2014
  • Adipocytes are endocrine cells that release bioactive mediators called adipokines. In condition of obesity characterized by low-grade chronic inflammation, adipocytes release inflammatory adipokines, which is related to insulin resistance. Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on in Korean medicine. BJCST is also expected to have anti-obesity activities. In the present study, we examined whether BJCST modulate the production of inflammatory adipokines and the activations of the mitogen-activated protein kinases (MAPK) signaling pathway related to induce adipocyte inflammation to elucidate the effects and its mechanism of BJCST on lowering the content of inflammatory adipokines in 3T3-L1 adipocytes. As a result, BJCST suppressed the production of proinflammatory cytokines, tumor necrosis factor (TNF) $-{\alpha}$, interleukin (IL) $-1{\beta}$, IL-6, interferon (IFN) -${\gamma}$, granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), and the production of other inflammatory mediators, prostaglandin $E_2(PGE_2)$ and nitric oxide(NO)viadownregulationofcyclooxygenase-2(COX-2)andinducible NO synthase (iNOS) gene expressions. In addition, BJCST decreased the phosphorylation of MAPK that promotes the production of inflammatory adipokines in 3T3-L1 mature adipocytes. In conclusion, BJCST could regulate the production of inflammatory adipokines and MAPK signaling pathway related to induction of adipose inflammation.

대두, 홍삼, 진피로 구성된 발효 추출물의 항염증 효능에 관한 연구 (Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel)

  • 이종록;김영우;변성희;김상찬;박숙자
    • 대한본초학회지
    • /
    • 제30권5호
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : Fermentation of herbs has been known to be helpful in improving the immune systems and protecting body against disease. The present study was conducted to evaluate anti-inflammatory effects of the fermentation extracts (FE) consisting of soybean, red ginseng andCitrus UnshiuPeel in lipopolysaccharide (LPS)-activated Raw264.7 cells.Methods : FE were prepared by the fermentation withBacillus Subtilisand then by extraction with ethanol (95%; prepared by the fermentation process). Cell viability was measured by MTT assay. Nitric oxide (NO) production was measured in culture media by Griess assay. The expression of nuclear factor (NF)-κB and inhibitory kappa B alpha (IκBα) was determined by Western blot.Results : LPS-induced production of NO and PGE2was dose-dependently decreased by the treatment of FE in Raw264.7 cells. These suppressive effects of FE on NO and PGE2production were related to the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. FE inhibited LPS-induced production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-1βin a dose-dependent manner. Furthermore, FE inhibited the NF-κB signaling pathway through the prevention of LPS-induced degradation of IκBαin cytosol and the nuclear translocation of NF-κB.Conclusions : These findings suggest that FE could have anti-inflammatory effects on LPS-induced inflammatory responses in macrophages.