• Title/Summary/Keyword: NNbF

Search Result 2, Processing Time 0.015 seconds

Natural, Nature-based Features (NNbF) - A Comparative Analysis with Nature-based Solutions (NbS) and Assessment of Its Applicability to Korea (자연/자연기반 특징(NNbF) - 자연기반해법(NbS)과 비교분석 및 국내적용성 평가)

  • Hyoseop Woo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • NNbF is a newly emerging approach to reduce flood risk in coastal and fluvial areas using natural features or engineered nature-based features with the expectation of co-benefits of provisional, regulating, and socio-cultural services provided by the ecosystem. NNbF is not quite different from existing, related terms based on nature, such as NbS, Eco-DRR, NI, GI, EwN, and BwN, for all these terms include expectation of benefits for human societies by directly utilizing or mimicking nature's ecological functions. If we focus on the comprehensiveness of each term's subject and object, we can say that NbS > NNbF > (Eco-DRR, NI/GI). Among the 18 measures introduced in the NNbF International Guideline in the river and floodplain management category, it was found that measures of wash lands and floodplain restoration, including levee setback/removal and side-channel restoration, seemed to be the most applicable to rivers in Korea. These selected measures could be more effective when river managers purchase riparian lands along river courses by relevant laws for river water-quality protection.

A Study of castability of Nickel-Chromium Alloys for porcelain fused to meta system (도재-금속보철물용(陶材-金屬補綴勿用) Ni-Cr계(系) 비귀금속합금(非貴金屬合金)의 주조성(鑄造性)에 관(關)한 연구(硏究))

  • Kim, Chee-Young
    • Journal of Technologic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 1986
  • This study investigated the effect of burnout temperature on the castability of some nickelchromium alloys for porcelain fused to metal system and the effect of beryllium on the castability. Four alloys were evaluated: two contained beryllium(rexillium III, Super I) and two nonberyllium(Unibond, NNB). five burnout temperature, ranging form 100$^{\circ}F$ to 1800$^{\circ}F$, were aet at 200$^{\circ}F$ intervals for this study. The results obtained were as follows: 1. Beryllium-containing alloys were more castable than nonberyllium-containing alloys. 2. There was an optimal burnout temperature of range from 1400$^{\circ}F$ to 1600$^{\circ}F$ for the berylliumcontaining alloys studied. 3. An optimal burnout temperature for the nonberyllium alloys was not established.

  • PDF