• Title/Summary/Keyword: NN techniques

Search Result 118, Processing Time 0.03 seconds

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

The solution of single-variable minimization using neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2528-2530
    • /
    • 2004
  • Neural network minimization problems are often conditioned and in this contribution way to handle this will be discussed. It is shown that a better conditioned minimization problem can be obtained if the problem is separated with respect to the linear parameters. This will increase the convergence speed of the minimization. One of the most powerful uses of neural networks is in function approximation(curve fitting)[1]. A main characteristic of this solution is that function (f) to be approximated is given not explicitly but implicitly through a set of input-output pairs, named as training set, that can be easily obtained from calibration data of the measurement system. In this context, the usage of Neural Network(NN) techniques for modeling the systems behavior can provide lower interpolation errors when compared with classical methods like polynomial interpolation. This paper solve of single-variable minimization using neural network.

  • PDF

Structural Vibration Control Technique using Modified Probabilistic Neural Network

  • Chang, Seong-Kyu;Kim, Doo-Kie
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.667-673
    • /
    • 2010
  • Recently, structures are becoming longer and higher because of the developments of new materials and construction techniques. However, such modern structures are more susceptible to excessive structural vibrations which cause deterioration in serviceability and structural safety. A modified probabilistic neural network(MPNN) approach is proposed to reduce the structural vibration. In this study, the global probability density function(PDF) of MPNN is reflected by summing the heterogeneous local PDFs automatically determined in the individual standard deviation of each variable. The proposed algorithm is applied for the vibration control of a three-story shear building model under Northridge earthquake. When the control results of the MPNN are compared with those of conventional PNN to verify the control performance, the MPNN controller proves to be more effective than PNN methods in decreasing the structural responses.

Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images (말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류)

  • Kim, Gyeong-Su;Kim, Pan-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

Techniques to Improve Accuracy of Fingerprinting-Positioning-Based Kalman Filter Tracking (지문방식 측위 기반 칼만필터 추적의 정확성 제고 방법)

  • Yim, Jae-Geol;Jeong, Seung-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.313-318
    • /
    • 2007
  • 위치기반서비스에서 사용자의 정확한 위치가 요구되면서 측위와 추적에 대한 연구가 활발히 진행되고 있다. 측위 방법에는 위성기반 방법[1, 2], 로컬네트워크기반 방법[3-6], 센서기반 방법[1, 7, 8, 9]등이 있다. 본 연구에서는 로컬네트워크 중 WLAN (Wireless Local Area Network) 환경의 옥내에서 사용자의 위치를 추적하는 기존의 방법의 정확성을 제고하는 방안을 제안한다. 제안하는 방법은 WLAN 환경에서 RSS를 측정하여 K-NN방식으로 현재 위치를 판단한 다음, 칼만필터를 사용하여 사용자의 위치와 이동경로를 예측한다는 점에서 기존의 방법과 비슷하다. 제안하는 방법의 특징은 도면 정보를 이용하는 것이다. 제안하는 방법은 도면정보로부터 갈림길 영역을 파악하고, 갈림길 영역에서는 측정치에 가중치를 두고 갈림길이 아닌 지역에서는 시스템 모델에 가중치를 두도록 파라메타의 값을 조절한다. 제안하는 방법의 효율성을 실험적으로 증명하기 위한 실험 결과와 분석 내용도 제시한다.

  • PDF

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.