• Title/Summary/Keyword: NN techniques

Search Result 118, Processing Time 0.024 seconds

Comparison of Biological Activity between Nelumbo nucifera G. Extracts and Cosmetics Adding Nelumbo nucifera G. (백련(Nelumbo nucifera G.) 추출물 및 화장품에 첨가 시 생리활성 비교)

  • Lee, Jin-Young;Yu, Mi-Ra;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1241-1248
    • /
    • 2010
  • The solvent extracts of Nelumbo nucifera G. were investigated for antioxidant activities, whitening and anti-wrinkle effects to apply as a functional ingredient in cosmetic products. For their industrial application, the cosmetic products were also prepared with advanced formulation techniques such as W/O/W multiple emulsion. Total phenolic and flavonoids contents increased in Nelumbo nucifera G.-Leaf (NN-L). The electron donating ability of Nelumbo nucifera G.-Flower (NN-F) or Nelumbo nucifera G.-Leaf (NN-L) extracts were above 85% at a concentration of 500 ppm. The superoxide dismutase (SOD)-like activity of Nelumbo nucifera G. (NN-L) extracts was about 60% at a concentration of 1,000 ppm. The xanthine oxidase inhibitory effect of NN-L extract was higher than that of NN-F and NN-S extracts. The tyrosinase inhibitory effect, which is related to skin-whitening, was 36% in NN-F at 1,000 ppm. For anti-wrinkle effect, the elastase inhibition activity of NN-L was about 30% at 1,000 ppm. The results of stability test showed that W/O/W multiple emulsion (ME) containing Nelumbo nucifera G. extracts. The electron donating ability of the ME containing NN-F and NN-L were about 60% at a concentration of 100 ppm. The superoxide dismutase (SOD)-like activity of the ME containing NN-L was 30% at 1,000 ppm. The tyrosinase inhibitory effect, which is related to skin-whitening, was 34% in the ME containing NN-F at 1,000 ppm. In anti-wrinkle effect, the elastase inhibition activity of the ME containing NN-L was about 55% at 1,000 ppm.

Performance Comparison between Neural Network and Genetic Programming Using Gas Furnace Data

  • Bae, Hyeon;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.448-453
    • /
    • 2008
  • This study describes design and development techniques of estimation models for process modeling. One case study is undertaken to design a model using standard gas furnace data. Neural networks (NN) and genetic programming (GP) are each employed to model the crucial relationships between input factors and output responses. In the case study, two models were generated by using 70% training data and evaluated by using 30% testing data for genetic programming and neural network modeling. The model performance was compared by using RMSE values, which were calculated based on the model outputs. The average RMSE for training and testing were 0.8925 (training) and 0.9951 (testing) for the NN model, and 0.707227 (training) and 0.673150 (testing) for the GP model, respectively. As concern the results, the NN model has a strong advantage in model training (using the all data for training), and the GP model appears to have an advantage in model testing (using the separated data for training and testing). The performance reproducibility of the GP model is good, so this approach appears suitable for modeling physical fabrication processes.

System Identification for Analysis Model Upgrading of FRP Decks (FRP 바닥판의 해석모델개선을 위한 System Identification 기법)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Lee, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Potential of the kNN Method for Estimation and Monitoring off-Reserve Forest Resources in Ghana

  • Kutzer, Christian
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2008
  • Dramatic price increases of fossil fuels and the economic development of emerging nations accelerates the transformation of forest lands into monocultures, e.g. for biofuel production. On this account, cost efficient methods to enable the monitoring of land resources has become a vital ambition. The application of remote sensing techniques has become an integral part of forest attribute estimation and mapping. The aim of this study was to evaluate the potentials of the kNN method by combining terrestrial with remotely sensed data for the development of a pixel-based monitoring system for the small scaled mosaic of different land use types of the off-reserve forests of the Goaso forest district in Ghana, West Africa. For this reason, occurrence and distribution of land use types like cocoa and non-timber forest resources, such as bamboo and raphia palms, were estimated, applying the kNN method to ASTER satellite data. Averaged overall accuracies, ranging from 79% for plantain, to 83% for oil palms, were found for single-attribute classifications, whereas a multi-attribute approach showed overall accuracies of up to 70%. Values of k between 3 and 6 seem appropriate for mapping bamboo. Optimisation of spectral bands improves results considerably.

  • PDF

Optimal Stiffness Estimation of Composite Decks Model using System Identification (System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Category Variable Selection Method for Efficient Clustering

  • Heo, Jun;Kim, Chae Yun;Jung, Yong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.40-42
    • /
    • 2013
  • Recent medical industry is an aging society and the application of national health insurance, with state-of-the-art research and development, including the pharmaceutical market is greatly increased. The nation's health care industry through new support expansion and improve the quality of life for the research and development will be needed. In addition, systemic administration of basic medical supplies, or drugs are needed, the drug at the same time managing how systematic analysis of pharmaceutical ingredients, based on data through the purchase of new medicines and pharmaceutical ingredients automatically classified by analyzing the statistics of drug purchases and the future a system that can predict a patient is needed. In this study, the drugs to the patient according to the component analysis and predictions for future research techniques, k-means clustering and k-NN (Nearest Neighbor) Comparative studies through experiments using the techniques employ a more efficient method to study how to proceed. In this study, the effects of the drugs according to the respective components in time according to the number of pieces in accordance with the patient by analyzing the statistics by predicting future patient better medical industry can be built.

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Price Determinant Factors of Artworks and Prediction Model Based on Machine Learning (작품 가격 추정을 위한 기계 학습 기법의 응용 및 가격 결정 요인 분석)

  • Jang, Dongryul;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.687-700
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the interaction effects between price determinants of artworks. We expand the methodology in art market by applying machine learning techniques to estimate the price of artworks and compare linear regression and machine learning in terms of prediction accuracy. Methods: Moderated regression analysis was performed to verify the interaction effects of artistic characteristics on price. The moderating effects were studied by confirming the significance level of the interaction terms of the derived regression equation. In order to derive price estimation model, we use multiple linear regression analysis, which is a parametric statistical technique, and k-nearest neighbor (kNN) regression, which is a nonparametric statistical technique in machine learning methods. Results: Mostly, the influences of the price determinants of art are different according to the auction types and the artist 's reputation. However, the auction type did not control the influence of the genre of the work on the price. As a result of the analysis, the kNN regression was superior to the linear regression analysis based on the prediction accuracy. Conclusion: It provides a theoretical basis for the complexity that exists between pricing determinant factors of artworks. In addition, the nonparametric models and machine learning techniques as well as existing parameter models are implemented to estimate the artworks' price.

Optimization of Case-based Reasoning Systems using Genetic Algorithms: Application to Korean Stock Market (유전자 알고리즘을 이용한 사례기반추론 시스템의 최적화: 주식시장에의 응용)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.16 no.1
    • /
    • pp.71-84
    • /
    • 2006
  • Case-based reasoning (CBR) is a reasoning technique that reuses past cases to find a solution to the new problem. It often shows significant promise for improving effectiveness of complex and unstructured decision making. It has been applied to various problem-solving areas including manufacturing, finance and marketing for the reason. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still a challenging issue. Most of the previous studies on CBR have focused on the similarity function or optimization of case features and their weights. According to some of the prior research, however, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. In spite of the fact, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the novel approach to Korean stock market. Experimental results show that the GA-optimized k-NN approach outperforms other AI techniques for stock market prediction.

Determining the optimal number of cases to combine in a case-based reasoning system for eCRM

  • Hyunchul Ahn;Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.178-184
    • /
    • 2003
  • Case-based reasoning (CBR) often shows significant promise for improving effectiveness of complex and unstructured decision making. Consequently, it has been applied to various problem-solving areas including manufacturing, finance and marketing. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still challenging issue. Most of previous studies to improve the effectiveness for CBR have focused on the similarity function or optimization of case features and their weights. However, according to some of prior researches, finding the optimal k parameter for k-nearest neighbor (k-NN) is also crucial to improve the performance of CBR system. Nonetheless, there have been few attempts which have tried to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the new model to the real-world case provided by an online shopping mall in Korea. Experimental results show that a GA-optimized k-NN approach outperforms other AI techniques for purchasing behavior forecasting.

  • PDF