• Title/Summary/Keyword: NN techniques

Search Result 118, Processing Time 0.034 seconds

A K-Nearest Neighbor Algorithm for Categorical Sequence Data (범주형 시퀀스 데이터의 K-Nearest Neighbor알고리즘)

  • Oh Seung-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.215-221
    • /
    • 2005
  • TRecently, there has been enormous growth in the amount of commercial and scientific data, such as protein sequences, retail transactions, and web-logs. Such datasets consist of sequence data that have an inherent sequential nature. In this Paper, we study how to classify these sequence datasets. There are several kinds techniques for data classification such as decision tree induction, Bayesian classification and K-NN etc. In our approach, we use a K-NN algorithm for classifying sequences. In addition, we propose a new similarity measure to compute the similarity between two sequences and an efficient method for measuring similarity.

  • PDF

A Study of Runoff Curve Number Estimation Using Land Cover Classified by Artificial Neural Networks (신경망기법으로 분류한 토지피복도의 CN값 산정 적용성 검토)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.633-645
    • /
    • 2003
  • The techniques of GIS and remote sensing are being applied to hydrology, geomorphology and various field of studies are performed by many researcher, related those techniques. In this paper, curve number change detection is tested according to soil map and land cover in mountain area. Neural networks method is applied for land cover classification and GIS for curve number calculation. The first, sample area are selected and tested land cover classification, NN(84.1%) is superior to MLC(80.9%). So we selected NN with land cover classifier. The second, curve number from the land cover by neural network classifier(57) is compared with that(curve number) from the land cover by manual work(55). Two values are so similar. The third, curve number classified by NN in sample area was applied and tested to whole study area. As results of this study, it is shown that curve number is more exact and efficient by using NN and GIS technique than by (using) manual work.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

Comparison of the Tracking Methods for Multiple Maneuvering Targets (다중 기동 표적에 대한 추적 방식의 비교)

  • Lim, Sang Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • Over last decade Multiple Target Tracking (MTT) has been the subject of numerous presentations and conferences [1979-1900]. Various approaches have been proposed to solve the problem. Representative works in the problem are Nearest Neighbor (NN) method based on non-probabilistic data association (DA), Multiple Hypothesis Test (MHT) and Joint Probabilistic Data Association (JPDA) as the probabilistic approaches. These techniques have their own advantages and limitations in computational requirements and in the tracking performances. In this paper, the three promising algorithms based on the NN standard filter, MHT and JPDA methods are presented and their performances against simulated multiple maneuvering targets are compared through numerical simulations.

  • PDF

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

Improving of kNN-based Korean text classifier by using heuristic information (경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선)

  • Lim, Heui-Seok;Nam, Kichun
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Automatic text classification is a task of assigning predefined categories to free text documents. Its importance is increased to organize and manage a huge amount of text data. There have been some researches on automatic text classification based on machine learning techniques. While most of them was focused on proposal of a new machine learning methods and cross evaluation between other systems, a through evaluation or optimization of a method has been rarely been done. In this paper, we propose an improving method of kNN-based Korean text classification system using heuristic informations about decision function, the number of nearest neighbor, and feature selection method. Experimental results showed that the system with similarity-weighted decision function, global method in considering neighbors, and DF/ICF feature selection was more accurate than simple kNN-based classifier. Also, we found out that the performance of the local method with well chosen k value was as high as that of the global method with much computational costs.

  • PDF

Detection of E.coli biofilms with hyperspectral imaging and machine learning techniques

  • Lee, Ahyeong;Seo, Youngwook;Lim, Jongguk;Park, Saetbyeol;Yoo, Jinyoung;Kim, Balgeum;Kim, Giyoung
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.645-655
    • /
    • 2020
  • Bacteria are a very common cause of food poisoning. Moreover, bacteria form biofilms to protect themselves from harsh environments. Conventional detection methods for foodborne bacterial pathogens including the plate count method, enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR) assays require a lot of time and effort. Hyperspectral imaging has been used for food safety because of its non-destructive and real-time detection capability. This study assessed the feasibility of using hyperspectral imaging and machine learning techniques to detect biofilms formed by Escherichia coli. E. coli was cultured on a high-density polyethylene (HDPE) coupon, which is a main material of food processing facilities. Hyperspectral fluorescence images were acquired from 420 to 730 nm and analyzed by a single wavelength method and machine learning techniques to determine whether an E. coli culture was present. The prediction accuracy of a biofilm by the single wavelength method was 84.69%. The prediction accuracy by the machine learning techniques were 87.49, 91.16, 86.61, and 86.80% for decision tree (DT), k-nearest neighbor (k-NN), linear discriminant analysis (LDA), and partial least squares-discriminant analysis (PLS-DA), respectively. This result shows the possibility of using machine learning techniques, especially the k-NN model, to effectively detect bacterial pathogens and confirm food poisoning through hyperspectral images.

Implementation of a Library Function of Scanning RSSI and Indoor Positioning Modules (RSSI 판독 라이브러리 함수 및 옥내 측위 모듈 구현)

  • Yim, Jae-Geol;Jeong, Seung-Hwan;Shim, Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1483-1495
    • /
    • 2007
  • Thanks to IEEE 802.11 technique, accessing Internet through a wireless LAN(Local Area Network) is possible in the most of the places including university campuses, shopping malls, offices, hospitals, stations, and so on. Most of the APs(access points) for wireless LAN are supporting 2.4 GHz band 802.11b and 802.11g protocols. This paper is introducing a C# library function which can be used to read RSSIs(Received Signal Strength Indicator) from APs. An LBS(Location Based Service) estimates the current location of the user and provides useful user's location-based services such as navigation, points of interest, and so on. Therefore, indoor, LBS is very desirable. However, an indoor LBS cannot be realized unless indoor position ing is possible. For indoor positioning, techniques of using infrared, ultrasound, signal strength of UDP packet have been proposed. One of the disadvantages of these techniques is that they require special equipments dedicated for positioning. On the other hand, wireless LAN-based indoor positioning does not require any special equipments and more economical. A wireless LAN-based positioning cannot be realized without reading RSSIs from APs. Therefore, our C# library function will be widely used in the field of indoor positioning. In addition to providing a C# library function of reading RSSI, this paper introduces implementation of indoor positioning modules making use of the library function. The methods used in the implementation are K-NN(K Nearest Neighbors), Bayesian and trilateration. K-NN and Bayesian are kind of fingerprinting method. A fingerprint method consists of off-line phase and realtime phase. The process time of realtime phase must be fast. This paper proposes a decision tree method in order to improve the process time of realtime phase. Experimental results of comparing performances of these methods are also discussed.

  • PDF

Implementation of AP-Based and RFID-Based Indoor Positioning Web Services (공유기 및 RFID를 이용한 옥내 측위 웹 서비스 구현)

  • Han, Chang-Yong;Lee, Gye-Young;Yim, Jae-Geol;Shim, Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • LBS (Location Based Service) services are very useful to our daily life and it should be available inside a building: a huge building, a shopping mall, a large scale underground shopping center, and so on where GPS (Global Positioning System) signal is not available. An LBS which is provided inside a building is called an ILBS (Indoor Location Based Service). One of the most important techniques for ILBS development is indoor positioning. Among the indoor positioning techniques, APs (access points) of WLAN based ones are most economical because WLAN is available almost everywhere. Meanwhile, the web service has been proved to be an excellent practice of software reuse. Therefore, if indoor positioning is provided in the form of web service to programmers then development of ILBS would be greatly accelerated. This paper introduces the AP based trilateration and K-NN indoor positioning and RFID based indoor positioning web services we have developed.

Performance Analysis of Fingerprinting algorithms for Indoor Positioning (옥내 측위를 위한 지문 방식 알고리즘들의 성능 분석)

  • Yim, Jae-Geol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.1-9
    • /
    • 2006
  • For the indoor positioning, wireless fingerprinting is most favorable because fingerprinting is most accurate among the techniques for wireless network based indoor positioning which does not require any special equipments dedicated for positioning. The deployment of a fingerprinting method consists of off-line phase and on-line phase. Off-line phase is not a time critical procedure, but on-line phase is indeed a time-critical procedure. If it is too slow then the user's location can be changed while it is calculating and the positioning method would never be accurate. Even so there is no research of improving efficiency of on-line phase of wireless fingerprinting. This paper proposes a decision-tree method for wireless fingerprinting and performs comparative analysis of the fingerprinting techniques including K-NN, Bayesian and our decision-tree.