• Title/Summary/Keyword: NMR structure

검색결과 1,357건 처리시간 0.026초

계면활성제 첨가에 따른 가스하이드레이트 생성 결정과 $^{13}C$ NMR 구조 분석 고찰 (Investigation of Gas Hydrate Crystallization and Structure Analysis by $^{13}C$ NMR with Surfactant)

  • 조병학;이영철;신명욱;이성한
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.395-398
    • /
    • 2006
  • 동일한 조건에서 순수한 물과 계면활성제인 DBS(dodecyl bezebe sulfonic acid) 25ppm을 첨가한 물에 대해 천연가스 하이드레이트를 제조시 가스의 함유량은 각각 80배와 160배로 2배의 차이가 발생한다. 이에 대해 본 연구에서는 결정 생성 형태의 관찰 및 $^{13}C$ NMR을 사용한 분광학적 구조 분석으로부터 이의 원인을 찾고자 하였다. 순수한 물과 DBS를 미량 함유한 물을 사용하여 whiskery 결정을 생성시킨 결과, 순수한 물을 사용한 경우보다 섬유 다발 형태가 매우 활발한 형태의 결정 형태로 가스하이드 레이트가 생성됨을 알 수 있었다. 또한 400MHz의 NMR을 사용한 분광학적 구조 분석으로부터 천연가스하이드레이트는 구조-I과 구조-II가 혼재된 결정 구조를 이루고 있음을 알 수 있었다. 또한 DBS를 함유한 물에 의해 제조된 천연가스하이드레이트는 arge cage를 많이 생성시키는 역할을 하는 분석 결과를 보였고 이것이 가스 함유량을 증대시키는 원인 중의 하나임을 알 수 있었다.

  • PDF

The Structural Studies of Peptide P143 Derived from Apo B-100 by NMR

  • Lee, Ji-Eun;Kim, Gil-Hoon;Won, Ho-Shik
    • 한국자기공명학회논문지
    • /
    • 제25권4호
    • /
    • pp.58-63
    • /
    • 2021
  • Apolipoprotein B-100 (apo B-100), the main protein component that makes up LDL (Low density lipoprotein), consists of 4,536 amino acids and serves to combine with the LDL receptor. The oxidized LDL peptides by malondialdehyde (MDA) or acetylation in vivo act as immunoglobulin (Ig) antigens and peptide groups were classified into 7 peptide groups with subsequent 20 amino acids (P1-P302). The biomimetic peptide P143 (IALDD AKINF NEKLS QLQTY) out of C-group peptides carrying the highest value of IgG antigens were selected for structural studies that may provide antigen specificity. Experimental results show that P143 has β-sheet in Ile[1]-Asn[9] and α-helice in Gln[16]-Tyr[20] structure. Homonuclear 2D-NMR (COSY, TOCSY, NOESY) experiments were carried out for NMR signal assignments and structure determination for P143. On the basis of these completely assigned NMR spectra and proton distance information, distance geometry (DG) and molecular dynamic (MD) were carried out to determine the structures of P143. The proposed structure was selected by comparisons between experimental NOE spectra and back-calculated 2D NOE results from determined structure showing acceptable agreement. The total Root-Mean-Square-Deviation (RMSD) value of P143 obtained upon superposition of all atoms were in the set range. The solution state P143 has a mixed structure of pseudo α-helix and β-turn(Phe[10] to Glu[12]). These results are well consistent with calculated structure from experimental data of NOE spectra. Structural studies based on NMR may contribute to the prevent oxidation studies of atherosclerosis and observed conformational characteristics of apo B-100 in LDL using monoclonal antibodies.

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2)

  • Kim, Jeong-Mok;Won, Hyung-Sik;Kang, Sa-Ouk
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.59-66
    • /
    • 2013
  • BldD, a developmental transcription factor from Streptomyces coelicolor, is a homodimeric, DNA-binding protein with 167 amino acids in each subunit. Each monomer consists of two structurally distinct domains, the N-terminal domain (BldD-NTD) responsible for DNA-binding and dimerization and the C-terminal domain (BldD-CTD). In contrast to the BldD-NTD, of which crystal structure has been solved, the BldD-CTD has been characterized neither in structure nor in function. Thus, in terms of structural genomics, structural study of the BldD-CTD has been conducted in solution, and in the present work, mainchain NMR assignments of the recombinant BldD-CTD (residues 80-167 of BldD) could be achieved by a series of heteronuclear multidimensional NMR experiments on a [$^{13}C/^{15}N$]-enriched protein sample. Finally, the secondary structure prediction by CSI and TALOS+ analysis using the assigned chemical shifts data identified a ${\beta}-{\alpha}-{\alpha}-{\beta}-{\alpha}-{\alpha}-{\alpha}$ topology of the domain. The results will provide the most fundamental data for more detailed approach to the atomic structure of the BldD-CTD, which would be essential for entire understanding of the molecular function of BldD.

황정(黃精) 추출물의 화학구조 결정에 관한 연구(I) (Studies on Chemical Structure Determination of Polygonatum sibiricum Extracts(I))

  • 신동수;윤중호;박주희;권기락;안철진;주우홍;강진호;문병호
    • 생명과학회지
    • /
    • 제9권2호
    • /
    • pp.207-211
    • /
    • 1999
  • 당뇨에 대한 황정의 약효가 알려지면서 황정의 생리활성 연구가 많이 진행되고 있다. 따라서 본 연구에서는 황정 추출물의 hexane층에서 생리활성 물질로 기대되는 새로운 화합물 I를 분리하고, 분리한 화합물의 화학적인 구조를 분광학적인 방법에 의하여 확인하였다. 1H-nmr, 13C-nmr, DEPT135, COSY, HMQC, HMBC 스펙트럼 및 MS 스펙트럼으로 확인하여 화합물 I의 구조가 9,12-(9E, 12E)-octadecadienoic acid 임을 알 수 있었다.

  • PDF

Proper NMR methods for studying RNA thermometers

  • Kim, Won-Je;Kim, Nak-Kyoon
    • 한국자기공명학회논문지
    • /
    • 제19권3호
    • /
    • pp.143-148
    • /
    • 2015
  • In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5'-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the $37^{\circ}C$ within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.