• 제목/요약/키워드: NMR relaxometry

검색결과 5건 처리시간 0.015초

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

NMR Relaxometry of Water in Set Yogurt During Fermentation

  • Mok, Chul-Kyoon;Qi, Jinning;Chen, Paul;Ruan, Roger
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.895-898
    • /
    • 2008
  • The mobility of water in set yogurt during fermentation was studied using nuclear magnetic resonance (NMR) relaxometry. The spin-spin relaxation was analyzed using a 2-fraction model, resulting in 2 spin-spin relaxation time constants $T_{21}$ and $T_{22}$. Both $T_{21}$ and $T_{22}$ exhibited rapid changes between 2 and 4 hr of fermentation, coinciding with the drop in pH and the rise in lactic acid bacteria count. The spin-lattice relaxation time $T_1$ increased over the fermentation period. Both $T_1$ and $T_2$ showed an increase in the mobility of water upon gel formation during fermentation. Water redistribution within the gel matrix due to casein aggregation and structure forming may be responsible for the changes in mobility.

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

Microwave Radiation Effects on the Process of Escherichia coli Cultivation

  • Kuznetsov, Denis;Volkhin, Igor;Orlova, Ekaterina;Neschislyaev, Valery;Balandina, Alevtina;Shirokikh, Anna
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.372-380
    • /
    • 2019
  • Modern biotechnological industries have been attempting to improve the efficiency of bacterial strain cultivation. Millimeter wave electromagnetic radiation can have a varied influence on E. coli cultivation processes. The results of the study revealed that when a microwave radiation of low intensity is applied to positively adjust the conditions for the accumulation of bacterial culture biomass, a significant role is played not only by radiation parameters, but also by concomitant biological factors, which influence the reproducibility of the cultivation process and help obtain a useful biotechnological effect. The authors suggest a model that can be used to study the molecular mechanisms underlying the changes in the buildup of E. coli biomass under the influence of electromagnetic radiation.

에코의 개수와 임의 잡음이 T2 이완영상의 구성에 미치는 영향연구 : 8에코 CPMG영상화 펄스열의 개발 (The Effect of Number of Echoes and Random Noise on T2 Relaxography : Development of 8-Echo CPMG)

  • 정은기
    • Investigative Magnetic Resonance Imaging
    • /
    • 제2권1호
    • /
    • pp.67-72
    • /
    • 1998
  • 자기공명 영상의 의학적 이용에서 T2이완시간의 화소별 영상화(T2 이완 영상)는 병변의 정량적 진단도구로서 제안된 바 있다. NMR의 물리/화학적 이용에서 T2 이완시간의 측정으로서 CPMG(Carr-Pucell-Meiboom-Gill) 펄스열이 가장 효과적으로 인정되고, 쓰이고 있으나, 선형자계를 가하는 MR 영상화 장비에서는 측정된 다른 TE의 영상들을 이용한 T2 이완시간의 영상화 자체에 대한 복잡한 계산을 영상기기에서 수행에 문제가 있고, 일반적으로 최대 4개의 CPMG 에코를 영상화하는 펄스열이 제공되어 있다. 좀더 정확한 T2 이완영상화를 위하여 적어도 8개의 다른 반향시간 TE를 가진 영상들을 필용로 하므로, MR 영상화 장비사에서 제공된 펄스열을 이용하면, 적어도 두번 이상의 영상화를 하여야한다. 이는 TR을 2500msec로 할 때 적어도 15분 정도의 시간이 걸리며, 이 동안 환자의 약간의 움직임, 특히 각 4개 단위의 영상화 사이에 움직임에 의한 임의적 잡음이 계산될 T2 영상에 큰 영향을 미친다. 이 연구에서는 시뮬레이션에 의하여 1, 5, 10% 의 이론적인 임의 잡음을 포함한 영상들을 이용하여 잡음이 T2 영상의 작성에 미치는 영향을 연구하였다. 그리고 4개 에코 펄스열을 이용하여 세 번의 영상화로 12개의 영상을 얻고, 이들로부터 4개, 8개의 다른 TE를 가진 영상들을 선택하여 T2 영상을 계산하였다. 그리고 이 연구에서 개발된 8에코 CPMG펄스열로 한 번에 얻은 8개의 영상을 이용한 T2 이완 영상과 결과를 비교하였다. 잡음이 클수록 실제치보다 T2가 길었고, 8-에코 펄스열은 영상화하는 동안에 환자의 움직임을 줄여서 더 정확한 T2 이완 영상을 만들수 있었다.

  • PDF