• Title/Summary/Keyword: NMR(Nuclear Magnetic Resonance)

Search Result 543, Processing Time 0.032 seconds

Hard Tissue Analysis of NMR after Fluoride Administration

  • Kim, Hye-Young;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.599-602
    • /
    • 2016
  • Fluoride (F) is an important element for the mineralization of body tissues. The purpose of this study was to administer fluoride prenatally to rats to evaluate its beneficial concentration for rat bone using microstructural analysis, to analyze its effect on the bone structure, and to evaluate the effect of its transfer through rat placenta. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectrometry (NMR) were performed. The $^{19}F$ NMR and $^{31}P$ NMR signals suggested the existence of fluoride ions in the apatite lattice because the signals were caused by the fluoride ions that were coupled to the phosphate atoms and were affected in the phosphate phases other than the element phases in the apatite. Consequently, if it was not affected too much, the desirable concentration of prenatal fluoride treatment could have a helpful effect on the bone crystal structure through placental fluoride transfer.

A Review on nuclear magnetic resonance logging: fundamental theory and measurements (자기공명검층: 기본 이론 및 자료 측정)

  • Jang, Jae Hwa;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.235-244
    • /
    • 2012
  • Nuclear magnetic resonance (NMR) logging has been considered one of the most complicated nevertheless, one of the most powerful logging methods for the characterization on of both rocks and natural fluids in formation. NMR measures magnetized signals (polarization and relaxation) between the properties of hydrogen nucleus called magnetic moment and applied magnetic fields. The measured data set contains two important petrophysical properties such as density of hydrogen in the fluids inside the pore space and the distinct decay rate for fluid type. Therefore, after the proper data processing, key petrophysical information, not only the quantities and properties of fluids but also supplies of rock characterization in a porous medium, could be archived. Thus, based on this information, several ongoing researches are being developed in estimating aspects of reservoir productivity information, permeability and wettability since it is the key to having correct interpretation. This study goes through the basic theory of NMR at first, and then reviews NMR logging tools as well as their technical characteristics. This paper also briefly discusses the basic knowledge of NMR simulation algorithm by using Random walk.

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

Thermodynamic and Physical Properties of (NH4)2MnCl4·2H2O by Nuclear Magnetic Resonance Relaxation Times

  • Kim, Yoo Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • The phase transition temperatures and thermodynamic properties of $(NH_4)_2MnCl_4{\cdot}2H_2O$ grown by the slow evaporation method were studied using differential scanning calorimetry and thermogravimetric analysis. A structural phase transition occurred at temperature $T_{C1}$ (=264 K), whereas the changes at $T_{C2}$ (=460 K) and $T_{C3}$ (=475 K) seemed to be chemical changes caused by thermal decomposition. In addition, the chemical shift and the spin-lattice relaxation time $T_{1{\rho}}$ were investigated using $^1H$ magic-angle spinning nuclear magnetic resonance (MAS NMR), in order to understand the role of $NH_4{^+}$ and $H_2O$. The rise in $T_{1{\rho}}$ with temperature was related to variations in the symmetry of the surrounding $H_2O$ and $NH_4{^+}$.

MRI(Magnetic Resonance Imaging)의 원리와 응용

  • 오창현
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.272-276
    • /
    • 1996
  • 1948년 Harvard 대학의 Purcell교수와 Stanford 대학의 Bloch교수가 핵자기 공명(Nuclear Magnetic Resonance : NMR) 현상을 발견한 이래로 NMR은 물질의 분자단위에서 화학적, 물리학적 성질을 밝혀내는 탁월한 방법으로 널리 이용되어 왔다. NMR 현상을 이용한 영상촬영법(Magnetic Resonance Imaging, MRI)은 1970년대초 Lauterber와 Damadian 교수가 처음 영상을 얻을 수 있다는 가능성을 제시한 이후 급속한 발전을 하여 1980년대 초에는 Moore와 Holland에 의해 의학분야에 응용 가능할 정도의 영상이 얻어졌다. 1980년대 중반부터 상용화 되었으며 최근 그 기법도 NMR현상과 연관된 파라미터인 $T_{1}$, $T_{2}$는 물론 혈류의 속도, 자화율, 확산(Diffusion), Perfusion의 영상기법을 비롯해 혈관조영술(MR Angiography), 뇌기능영상(Functional Imaging)등 과거에는 상상도 할 수 없었던 다양한 영상기법 개발되었다. 여기서는 먼저 MRI의 원리를 설명한 후 MRI의 여러 촬영기법들과 그 응용에 관해 설명하겠다.

  • PDF

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions

  • Sugiki, Toshihiko;Lin, Yuxi;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.

Minireview on Recent Antibody-Related NMR Studies

  • Jang, Jinhwa;Kim, Ji-Hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.129-135
    • /
    • 2020
  • In a relatively short period, monoclonal antibodies have made dramatic success as therapeutics for various diseases such as cancers and autoimmune diseases and become an important development items for many pharmaceutical companies. In order to develop antibody drug, it is important to investigate the structural characteristics of both antibody and antigen. NMR studies on antibody are extremely challenging due to big huddles such as a big size of protein and isotope labeling, nevertheless, several studies have been reported in 10 years. Here, we analyzed 95 papers dealing with antibody-related NMR studies reported in recent 10 years. We categorized papers into 3 types: 1) structural characterization of antibody, 2) structural characterization of antigen using antibody, 3) amyloidosis caused by fragment of antibody. This work would shed new light on antibody-related NMR studies.

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.

Application of NMR to Magnet Study (자성 연구에 있어서의 핵자기공명의 쓸모)

  • Lee, Soon-Chil
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • Nuclear Magnetic Resonance (NMR) is a very useful tool for magnet study because it provides information on local spin environment. The valence of magnetic ions, spin canting angle, orbital state can be measured by NMR and the information on the position of the ions and the change of domains and domain walls can be obtained. The principle of operation is discussed with corresponding application examples.