• Title/Summary/Keyword: NMDA-receptor antagonist

Search Result 91, Processing Time 0.028 seconds

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

Magnesium Sulfate Attenuate Opioid Tolerance in Patients undergoing Major Abdominal Surgery (주요 복강수술 환자에서 황산 마그네슘의 아편유사제 내성 감소에 대한 효과)

  • Jang, Mi Soon;Son, Yong;Lee, Cheol;Lee, Ju Hwan;Park, Jeong Hyun;Lee, Myeong Jong
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2009
  • Background: Magnesium is a noncompetitive antagonist of the N-methyl-D aspartate (NMDA) receptor. Magnesium is thought to be involved in opioid tolerance by way of inhibiting calcium entry into cells. Methods: The patients were randomly assigned to three groups according to the anesthetic regimens: Group M received magnesium sulfate and Group C received saline intravenously under remifentanil-based anesthesia. Group S received saline intravenously under sevoflurane based anesthesia in place of remifentanil. The patients in the group M received 25% magnesium sulfate 50 mg/kg in 100 ml of saline, and those patients in groups C and S received an equal volume of saline before induction of anesthesia; this was followed by 10 mg/kg/h infusion of either magnesium sulfate (group M) or an equal volume of saline (groups C and S) until the end of surgery. Pain was assessed on a visual analog scale at 1, 6, 12, 24, and 36 hours after the operation. The time to the first postoperative analgesic requirement and the cumulative analgesic consumption were evaluated in the three groups. Results: The visual analog scales for pain and the cumulative analgesic consumption were significantly greater in group C than in other groups. The time to first postoperative analgesic requirement was significantly shorter in group C than that in the other groups. There were no differences between group M and S for side effects. Conclusions: A relatively high dose and continuous remifentanil infusion is associated with clinically relevant evidence of acute opioid tolerance. NMDA-receptor antagonist, magnesium sulfate as an adjuvant analgesic prevents opioid tolerance in patients who are undergoing major abdominal surgery under high dose and continuous remifentanil infusion-based anesthesia.

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells

  • Pai, Yoon Hyoung;Lim, Chae Seong;Park, Kyung-Ah;Cho, Hyun Sil;Lee, Gyu-Seung;Shin, Yong Sup;Kim, Hyun-Woo;Jeon, Byeong Hwa;Yoon, Seok Hwa;Park, Jin Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.425-432
    • /
    • 2016
  • In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current ($I_{NMDA}$) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic $I_{NMDA}$ in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the ${\alpha}$-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In $low-Mg^{2+}$ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in $I_{holding}$ ($I_{GLU}$) at a holding potential ($V_{holding}$) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive $I_{GLU}$ was observed even in normal aCSF at $V_{holding}$ of -40 mV or -20 mV. $I_{GLU}$ was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in $I_{holding}$ ($I_{AMPA}$) in SON MNCs. Pretreatment with AP5 attenuated $I_{AMPA}$ amplitudes to ~60% of the control levels in $low-Mg^{2+}$ aCSF, but not in normal aCSF at $V_{holding}$ of -70 mV. $I_{AMPA}$ attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced $I_{AMPA}$ attenuation in SON MNCs. Finally, chronic dehydration did not affect $I_{AMPA}$ attenuation by AP5 in the neurons. These results suggest that tonic $I_{NMDA}$, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death (L-Glutamate에 의한 PC12 세포의 고사성 사망)

  • Sung, Ki-Wug;Jung, Kyung-Heui;Kim, Seong-Yun;Kang, Jung-Hyae;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

Studies About the Effect of Excitatory Amino Acid Receptor Antagonist on Traumatic Spinal Cord Injury (척수신경손상에 대한 흥분성 아미노산 수용체 길항제의 효과에 대한연구)

  • Kim Jong-Keun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.1-9
    • /
    • 1995
  • The slow development of histopathological changes and long period required for stabilization of lesions have suggested that secondary injury processes exacerbate the effect of initial mechanical insult after traumatic spinal cord injury (SCI). The importance of glutamate receptors in the normal functions of spinal cord, in concert with the large body of evidence that points to their involvement in neurotoxicity due to both ischemic and traumatic insults to the CNS, suggested a probable role of glutamate receptors in secondary injury process after traumatic SCI. In order to investigate the involvement of excitatory amino acid in the secondary injury process after SCI, this study examined the effect of dextrorphan, a noncompetitive NMDA receptor antagonist, on the recovery of hindlimb function and the residual tissue at injury site following SCI. Locomotor function was assessed using open field test (21 point scale). At 8 weeks spinal cord tissue was examined using quantitative histopathologic technique. Prior to surgery female Long-Evans rats were adapted to the test environment. Rats received laminectomies (T9/T10), and spinal cord contusions (NYU impactor) were produced by a 10 gm weight dropped 25 mm. DXT (15 or 30 mg/kg, i.p.) or saline was injected 15 min before contusion. Behavioral testing resumed 2 days post-injury and continued twice a week for 8 weeks. No differences between DXT and saline groups were found for hindlimb function and sparing tissue at the lesion site. These results suggest that NMDA receptor might not be involved in secondary injury processes after traumatic SCI.

  • PDF

Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia (국소뇌허혈에서 NMDA 수용체 길항제가 국소 뇌포도당 대사율에 미치는 영향)

  • Kim, Sang-Eun;Hong, Seung-Bong;Yoon, Byung-Woo;Bae, Sang-Kyun;Choi, Chang-Woon;Lee, Dong-Soo;Chung, June-Key;Roh, Jae-Kyu;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.294-306
    • /
    • 1995
  • There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (ICGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[$^{14}C$] glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded ICGU ratio in 7 and 5 of the 15 regions measured, respectively (most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in ICGU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 postreatment did not significantly increase ICGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  • PDF

The Role of Adenosine Receptor on Norepinephrine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine 수용체의 역할)

  • Chung, Jong-Hoon;Choi, Bong-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked norepinephrine(NE) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-norepinephrine$ and the release of the labelled product, $[^3H]-NE$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 90 sec), and the influence of various agents on the evoked tritium-outflow was investigated. Ischemia(15min with 95% $N_2$ +5% $CO_2$) increased both the basal and evoked NE release. These increases were abolished by addition of glucose into the superfused medium, and they were significantly inhibited either by $0.3\;{\mu}M$ tetrodotoxin pretreatment or by removing $Ca^{++}$ in the medium. MK-801$(1{sim}10\;{\mu}M)$, a specific NMDA receptor antagonist, and glibenclamide $(1\;{\mu}M)$, a $K^+-channel$ inhibitor, neither alter the evoked NE release nor affected the Ischemia-Induced increases in NE release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, inhibited the effect of ischemia on the evoked NE release. Adenosine and $N^6-cyclopentyladenosine$ decreased the NE release in a dose-dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal (normoxic) condition. Also the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist did not affect the ischemia-effect. These results suggest that the evoked-NE release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decrease of NE release mediated through $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF