• 제목/요약/키워드: NLRP12

검색결과 12건 처리시간 0.019초

Single Nucleotide Polymorphisms of NLRP12 Gene and Association with Non-specific Digestive Disorder in Rabbit

  • Liu, Yun-Fu;Zhang, Gong-Wei;Xiao, Zheng-Long;Yang, Yu;Deng, Xiao-Song;Chen, Shi-Yi;Wang, Jie;Lai, Song-Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권8호
    • /
    • pp.1072-1079
    • /
    • 2013
  • The NLRP12 (NLR family, pyrin domain containing 12) serves as a suppressor factor in the inflammatory response and protects the host against inflammation-induced damage. In the present study, we aimed to study the polymorphisms of NLRP12 gene and its association with susceptibility to non-specific digestive disorder (NSDD) in rabbits. We re-sequenced the entire coding region of the rabbit NLRP12 gene and detected a total of 19 SNPs containing 14 synonymous and five non-synonymous variations. Among them, the coding SNP (c.1682A>G), which would carry a potential functional implication, was subsequently subjected to genotyping for case-control association study (272 cases and 267 controls). The results revealed that allele A was significantly protective against NSDD with an odds ratio value of 0.884 (95% confidence interval, 0.788 to 0.993; p = 0.038). We also experimentally induced NSDD in growing rabbits by feeding a fibre-deficient diet and subsequently investigated NLRP12 mRNA expression. The mRNA expression of NLRP12 in healthy status was significantly higher than that in severe NSDD (p = 0.0016). The highest expression was observed in individuals carrying the protective genotype AA (p = 0.0108). These results suggested that NLRP12 was significantly associated with the NSDD in rabbits. However, the precise molecular mechanism of NLRP12 involving in the development of rabbit NSDD requires further research.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Prolonged Exposure to Lipopolysaccharide Induces NLRP3-Independent Maturation and Secretion of Interleukin (IL)-1β in Macrophages

  • Hong, Sujeong;Yu, Je-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.115-121
    • /
    • 2018
  • Upon sensing of microbial infections or endogenous danger signals in macrophages, inflammasome signaling plays a significant role in triggering inflammatory responses via producing interleukin (IL)-$1{\beta}$. Recent studies revealed that active caspase-1, a product of the inflammasome complex, causes maturation of inactive pro-IL-$1{\beta}$ into the active form. However, the underlying mechanism by which this leaderless cytokine is secreted into the extracellular space remains to be elucidated. In this study, we demonstrated that prolonged lipopolysaccharide (LPS) treatment to macrophages could trigger the unexpected maturation and extracellular release of IL-$1{\beta}$ through a nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3)-independent manner. Short-term treatment (less than 6 h) of LPS induced robust production of the IL-$1{\beta}$ precursor form inside cells but did not promote the maturation and secretion of IL-$1{\beta}$ in bone marrow-derived macrophages or peritoneal macrophages. Instead, prolonged LPS treatment (more than 12 h) led to a significant release of matured IL-$1{\beta}$ with no robust indication of caspase-1 activation. Intriguingly, this LPS-triggered secretion of IL-$1{\beta}$ was also observed in NLRP3-deficient macrophages. In addition, this unexpected IL-$1{\beta}$ release was only partially impaired by a caspase-1 and NLRP3 inflammasome inhibitor. Collectively, our results propose that prolonged exposure to LPS is able to drive the maturation and secretion of IL-$1{\beta}$ in an NLRP3 inflammasome-independent manner.

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

비만모델에서 중강도 운동에 의한 인플라마좀, 대식세포 침윤, 갈색지방 관련 바이오 마커의 개선 효과 (Moderate Intensity Exercise Has More Positive Effects on The Gene Expression of Inflammasome, M1, M2 Macrophage Infiltration and Brown Adipocyte Markers Compared to High Intensity Exercise in Subcutaneous Adipose of Obese Mice Induced By High Fat Diet)

  • 김용안;피핏 피트리아니;박희근;이왕록
    • 생명과학회지
    • /
    • 제29권3호
    • /
    • pp.303-310
    • /
    • 2019
  • 비만은 체내 과도한 지방 축적으로 인하여 지방세포 자체에서 염증성 사이토카인이 증가로 인하여 세포의 기능을 약화시킨다. 규칙적인 운동은 지방분해와 갈색지방 증가로 인해 비만의 치료방법 중 핵심 전략으로 적용되고 있다. 고강도 운동은 염증성 사이토카인과 근형질세망 스트레스 발생을 초래하여 지방대사에 부정적인 결과를 초래하는 것으로 알려져 있다. 그러나 비만모델에서 중강도 운동과 고강도 운동에 의한 인플라마좀, 대식세포 침윤, 갈색지방 관련 바이오 마커의 비교연구는 이루어진 바 없다. 따라서 이 연구의 목적은 중강도 유산소 운동과 고강도 운동을 비교하여 인플라마좀(NLRP3, ASC), 대식세포 침윤인자 M1 (CD11c, CD86), M2 (CD206), 갈색지방($PGC1{\alpha}$, BMP7, PRDM, UCP1) 관련 변인에 우선적인 효과가 있는지 비교분석하고자 하였다. 이 연구의 목적을 위해 1) 정상식이 그룹(normal diet control, NC; n=10), 2) 60% 고지방식이 그룹(high-fat diet control, HC; n=10), 3) 중강도 운동 그룹(high fat diet with moderate intensity exercise, HME; n=10), 4) 고강도 운동그룹(high fat diet with high intensity exercise, HIE; n=10)으로 나누어 실시하였다. 중강도 운동 그룹은 고지방식이 그룹과 비교하여 NLRP3, F480, CD11c, CD8의 발현이 유의하게 낮아졌다. 중강도 운동은 CD206, $PGC1{\alpha}$, BMP7, PRDM이 유의하게 증가하였다. 고강도 운동은 NLRP3, CD11c and CD86은 유의하게 감소한것으로 확인되었다. 그러나 고강도 운동은 $PGC1{\alpha}$, BMP7는 증가한다. 이러한 결과는 중강도 운동은 인플라마좀, 대식세포 M1, M2 침윤과 갈색지방 세포 관련 요인의 개선이 효과적인 것으로 나타났다.

Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation

  • Dou, Jia-Yi;Jiang, Yu-Chen;Hu, Zhong-He;Yao, Kun-Chen;Yuan, Ming-Hui;Bao, Xiao-Xue;Zhou, Mei-Jie;Liu, Yue;Li, Zhao-Xu;Lian, Li-Hua;Nan, Ji-Xing;Wu, Yan-Ling
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.246-256
    • /
    • 2022
  • The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 µM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.

라스베라트롤 투여가 고지방식이 비만쥐의 지방조직에서의 inflammasome과 대식세포 마커에 미치는 영향 (Resveratrol Ameliorates High-fat-induced Metabolic Complications by Changing the Expression of Inflammasome Markers and Macrophage M1 and M2 Markers in Obese Mice)

  • 이영란;피핏 피트리아니;박희근;이왕록
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1462-1469
    • /
    • 2017
  • 본 연구 목적은 고지방식이 유도 비만 쥐의 피하지방조직에서 라스베라트롤 투여가 대식세포 침윤관련 염증인자에 미치는 영향을 규명하고자 하였다. 본 연구를 위해 정상식이군, 고지방식이군, 고지방식이+라스베라트롤 투여군으로 분류한 후, 라스베라트롤 투여군은 15주간 25 mg/kg 농도로 Dimethyl Sulfoxide에 용해하여 투여하였으며, 비교군은 Dimethyl Sulfoxide 용액만을 투여하였다. 연구결과 고지방식이군은 정상식이군에 비하여 체중이 유의하게 증가하였고, 라스베라트롤 투여군에서 고지방식이 군보다 NLRP3. ASC, Casepase1 mRNA 발현이 감소하였다. 또한 염증마커로 알려진 IL-18 mRNA 발현이 라스베라트롤 투여군에서 정상식이군과 고지방식이군보다 낮게 나타났다. 대식세포 침윤 마커인 F480, CD86 mRNA 발현에서도 라스베라트롤 투여군에서 고지방식이 군보다 유의한 감소를 보였다. 따라서 라스베라트롤 투여는 고지방식이 유도 비만 상황에서 대식세포 침윤 염증과 inflammasome에 긍정적인 영향을 미치는 것으로 보여진다.

고지방식이 동물의 간 조직에서 크리신 투여 또는 중강도 운동이 Inflammasome과 열 발생 유전자발현에 미치는 효과 (The Effects of Either Chrysin or Moderate Exercise on Inflammasome and Thermogenic Markers in High Fat Fed Mice)

  • 이영란;박희근;이왕록
    • 생명과학회지
    • /
    • 제29권5호
    • /
    • pp.607-613
    • /
    • 2019
  • 본 연구 목적은 고지방식이 동물의 간 조직에서 크리신 투여 또는 중강도운동이 Inflammasome과 thermogenesis 유전자 발현의 차이를 규명하고자 시도되었다. 본 연구를 위해 정상식이군, 고지방식이군, 고지방식이+크리신 투여군, 고지방식이+중강도 운동군으로 분류한 후, 크리신 투여군은 16주간 50 mg/kg 농도로 투여하였으며, 운동군은 최대산소섭취량의 60-75%의 중강도 운동으로 실시되었다. 연구결과 크리신 그리고 중강도운동군은 지방조직, 간조직 무게 그리고 지방세포 크기가 고지방식이 군과 비교해 유의하게 감소하였다. Inflammasome 유전자 변화는 크리신 투여군 그리고 중강도 운동군에서 NLRP3. ASC, Casepase1 mRNA 발현이 고지방식이 군과 비교해 유의하게 감소하였다. 열발생마커로 알려진 PGC-1a, BMP7 mRNA 발현은 중강도 운동군에서만 고지방식 이군과 비교해 유의하게 증가했다. 결론적으로 중강도 운동은 고지방식이 동물에서 지방무게, Inflammasome, 그리고 열발생 유전자들의 발현을 비만을 억제하는데 긍정적인 영향을 미치는 것으로 보여진다. 하지만 크리신 투여는 열발생 유전자 발현에는 유의한 차이를 나타내지 못하였다. 향후 연구에서는 크리신의 비만억제 효과를 규명하기 위해 투여농도 기간을 고려한 다양한 연구가 진행되어야 할 것이다.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.