• Title/Summary/Keyword: NLG(Natural Language Generation)

Search Result 5, Processing Time 0.016 seconds

A Frame-based Approach to Text Generation

  • Le, Huong Thanh
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.192-201
    • /
    • 2007
  • This paper is a study on constructing a natural language interface to database, concentrating on generating textual answers. TGEN, a system that generates textual answer from query result tables is presented. The TGEN architecture guarantees its portability across domains. A combination of a frame-based approach and natural language generation techniques in the TGEN provides text fluency and text flexibility. The implementation result shows that this approach is feasible while a deep NLG approach is still far to be reached.

  • PDF

Hypernetwork-based Natural Language Sentence Generation by Word Relation Pattern Learning (단어 간 관계 패턴 학습을 통한 하이퍼네트워크 기반 자연 언어 문장 생성)

  • Seok, Ho-Sik;Bootkrajang, Jakramate;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.205-213
    • /
    • 2010
  • We introduce a natural language sentence generation (NLG) method based on learning of word-association patterns. Existing NLG methods assume the inherent grammar rules or use template based method. Contrary to the existing NLG methods, the presented method learns the words-association patterns using only the co-occurrence of words without additional information such as tagging. We employ the hypernetwork method to analyze and represent the words-association patterns. As training going on, the model complexity is increased. After completing each training phase, natural language sentences are generated using the learned hyperedges. The number of grammatically plausible sentences increases after each training phase. We confirm that the proposed method has a potential for learning grammatical properties of training corpuses by comparing the diversity of grammatical rules of training corpuses and the generated sentences.

A Study on the Importance of Software Quality-in-use for Educational Chatbot: Using the AHP Method (학습용 챗봇 소프트웨어 사용 품질 특성의 중요도 연구: AHP기법을 활용하여)

  • Yunjeung Min;Jaekyoung Ahn
    • Journal of Information Technology Services
    • /
    • v.23 no.5
    • /
    • pp.59-72
    • /
    • 2024
  • Recent advancements in IT technology and infrastructure have led to the widespread application of AI chatbots across various fields, including education, where they have shown effectiveness in improving classroom focus and achievement [1][2]. This study analyzes the importance of quality-in-use for AI chatbots in elementary Korean language learning based on ISO/IEC 25000 Quality-in-use standards, aiming to provide quality evaluation criteria for future educational chatbot development. The research methodology involved a two-tier hierarchy of 5 main characteristics and 13 sub-characteristics of quality-in-use, with surveys conducted among industry professionals and instructors after preliminary investigations. Results showed that situational adaptability, effectiveness, and efficiency were prioritized in the main characteristics. In sub-characteristics, situational completeness, learning accuracy, and flexibility were top-ranked. Instructors emphasized the importance of risk mitigation, reflecting their concern for reducing private education costs and improving learning environments. Industry professionals prioritized completeness in chatbot outputs. These findings suggest that prioritizing instructor-valued features in subject-based learning chatbots can enhance their utility and effectiveness in educational settings. The study also highlights the potential for leveraging differences in quality evaluation priorities between industry professionals and instructors in developing learning chatbots

A Study on the Development Methodology for User-Friendly Interactive Chatbot (사용자 친화적인 대화형 챗봇 구축을 위한 개발방법론에 관한 연구)

  • Hyun, Young Geun;Lim, Jung Teak;Han, Jeong Hyeon;Chae, Uri;Lee, Gi-Hyun;Ko, Jin Deuk;Cho, Young Hee;Lee, Joo Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.215-226
    • /
    • 2020
  • Chatbot is emerging as an important interface window for business. This change is due to the continued development of chatbot-related research from NLP to NLU and NLG. However, the reality is that the methodological study of drawing domain knowledge and developing it into a user-friendly interactive interface is weak in the process of developing chatbot. In this paper, in order to present the process criteria of chatbot development, we applied it to the actual project based on the methodology presented in the previous paper and improved the development methodology. In conclusion, the productivity of the test phase, which is the most important step, was improved by 33.3%, and the number of iterations was reduced to 37.5%. Based on these results, the "3 Phase and 17 Tasks Development Methodology" was presented, which is expected to dramatically improve the trial and error of the chatbot development.

Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms (기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구)

  • Choi, Garam;Kim, Han-Gook;Kim, Kwang-Hoon;Kim, You-eil;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.99-120
    • /
    • 2017
  • In order to develop a semiautomatic support system that allows researchers concerned to efficiently analyze the technical trends for the ever-growing industry and market. This paper introduces a couple of Korean sentence generation models that can automatically generate definitional statements as well as descriptions of technical terms and concepts. The proposed models are based on a deep learning model called LSTM (Long Sort-Term Memory) capable of effectively labeling textual sequences by taking into account the contextual relations of each item in the sequences. Our models take technical terms as inputs and can generate a broad range of heterogeneous textual descriptions that explain the concept of the terms. In the experiments using large-scale training collections, we confirmed that more accurate and reasonable sentences can be generated by CHAR-CNN-LSTM model that is a word-based LSTM exploiting character embeddings based on convolutional neural networks (CNN). The results of this study can be a force for developing an extension model that can generate a set of sentences covering the same subjects, and furthermore, we can implement an artificial intelligence model that automatically creates technical literature.