• Title/Summary/Keyword: NLFE modeling

Search Result 7, Processing Time 0.021 seconds

Efficacy of CFRP configurations for shear of RC beams: experimental and NLFE

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.361-382
    • /
    • 2011
  • This paper presents the results of an investigation on shear strengthening of RC beams externally reinforced with CFRP composite. A total of six full-scale beams of four CFRP strengthened and two unstrengthened were tested in the absence of internal stirrups in the shear span. The strengthening configurations contained two styles: discrete uniformly spaced strips and customized wide strips over B-regions. The composite systems provided an increase in ultimate strength as compared to the unstrengthened beams. Among the three layouts that had the same area of CFRP, the highest contribution was provided by the customized layout that targeted the B-regions. A comparative study of the experimental results with published empirical equations was conducted in order to evaluate the assumed effective strains. The empirical equations were found to be unconservative. Nonlinear finite element (NLFE) models were developed for the beams. The models agreed with test results that targeting the B-region was more effective than distributing the same CFRP area in a discrete strip style over shear spans. Moreover, the numerical models predicted the contribution of different configurations better than the empirical equations.

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

[Retracted]Structural performance of RC beams with openings reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.475-493
    • /
    • 2022
  • The results of research focusing on the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh independently are presented in this article. Casting and testing of fourteen reinforced concrete beams with dimensions of 200×100×2000 mm under concentric compression loadings were part of the research program. The type of reinforcing materials, the volume fraction of reinforcement, the number of mesh layers, and the number of stirrups are the major parameters that change. The main goal is to understand the impact of using new appealing materials in reinforcing RC beams with openings. Using ANSYS-16.0 Software, nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings. A parametric study is also conducted to discuss the variables that can have the greatest impact on the mechanical behavior of the proposed model, such as the number of openings. The obtained experimental and numerical results demonstrated the FE simulations' acceptable accuracy in estimating experimental values. Furthermore, demonstrating that the strength gained of specimens reinforced with fiber glass meshes was reduced by approximately 38% when compared to specimens reinforced with expanded or welded steel meshes is significant. In addition, when compared to welded steel meshes, using expanded steel meshes in reinforcing RC beams with openings results in a 16 percent increase in strength. In general, when ferrocement beams with openings are tested under concentric loadings, they show higher-level ultimate loads and energy-absorbing capacity than traditional RC beams.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.

The flexural behavior of ferrocement RC channel slabs

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • The current study examines the experimental and numerical performance of reinforced concrete (RC) channel slabs made of ferrocement that have been reinforced with fiber glass, expanded steel mesh, and welded steel mesh. As part of the testing program, ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were loaded flexibly. The three main factors that can be altered are the mesh layer count, the type of reinforcing materials, and the reinforcement volume fraction. The main objective is to assess the effects of fortifying composite RC channel slabs with novel inventive materials. ANSYS-16.0 Software was used to simulate the behavior of composite channel slabs using nonlinear finite element analysis (NLFEA). It also shows how parametric analysis can be used to pinpoint variables like variations in slab dimensions that could significantly affect the mechanical behavior of the model. The obtained experimental and numerical results showed that finite element (FE) simulations had a tolerable degree of accuracy in estimating experimental values. It is crucial to show that specimens strengthened with fiber glass meshes gained about 12% lessstrength than specimens strengthened with expanded or welded steel meshes. In addition, RC channel slab reinforcement made of welded steel meshes has a 24% higher strength than expanded steel meshes. Tested under flexural loads, ferrocement specimens outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorption.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.