• Title/Summary/Keyword: NITE법

Search Result 2, Processing Time 0.019 seconds

Effects of Fiber Arrangement Direction on Microstructure Characteristics of NITE-SiC Composites (NITE-SiC 복합재료의 미세구조 특성에 미치는 섬유배열방향 영향)

  • Lee, Young-Ju;Yoon, Han-Ki;Park, Joon-Soo;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.158-161
    • /
    • 2006
  • SiC materials have been extensively studied for high temperature components in advanced energy conversion system and advanced gas turbine. However, the brittle characteristics of SiC such as law fracture toughness and law strain-to fracture impose a severe limitation on the practical applications of SiC materials. SiC/SiC composites can be considered as a promising candidate in various structural materials, because of their good fracture toughness. In this composite system, the direction of SiC fiber will give an effect to the mechanical properties. It is therefore important to control a properdirection of SiC fiber for the fabrication of high performance SiC/SiC composites. In this study, unidirection and two dimension woven structures of SiC/SiC composites were prepared starting from Tyranno SA fiber. SiC matrix was obtained by nano-powder infiltration and transient eutectoid (NITE) process. Effect of microstructure and density on the sintering temperature in NITE-SiC/SiC composites are described and discussed with the fiber direction of unidirection and two dimension woven structures.

  • PDF

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).