• Title/Summary/Keyword: NIRS

Search Result 269, Processing Time 0.031 seconds

Identification of country of production of veal meat by NIRS and by meat quality measurements.

  • Berzaghi, Paolo;Serva, Lorenzo;Gottardo, Flaviana;Cozzi, Giulio;Andrighetto, Igino
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1255-1255
    • /
    • 2001
  • The study used 356 veal calf meat samples received from Finland (n=16), France (n=109), Italy (n=81) and The Netherlands (n=150). Calves were raised under experimental protocols that compared feeding and housing practices normally used in each county to treatments aiming at improving animal welfare. Samples were taken at the $8^{th}$ rib of Longissimus thoracis muscle 24h after slaughter, They were kept refrigerated ( $2-4^{\circ}C$) under vacuum package for 6d and then frozen ($-20^{\circ}C$) until meat quality evaluation. Measurements included pH, color (Hunter Lab system), shear force, chemical composition (DM, Ash, Ether Extract, collagen and haematin content), weight and area cooking losses and a sensory evaluation by a group of panelists. A sample of meat was ground with a blade mill and scanned in duplicate between 1100 and 1498 nm (FOSS NIR Systems 5000). WinISI software was used to develop a discriminating equation using NIR spectra (SNV-detrend, derivative=1, gap=4nm, smooth=4nm). The Proc ANOVA and DISCRIM of SAS were used for all the laboratory determinations. County of production had a significant (P<0.01) effect on all the parameters. However, discriminant analysis using any or few laboratory parameters resulted in great errors of county classification. A more accurate (98.8%) classification was obtained only when using all the laboratory parameters. NIRS classified correctly 354 of the 356 samples (99.4%). Provided with a larger data set, NIRS could be used to identify country of production of veal meat.

  • PDF

Prediction of Heavy Metal Content in Compost Using Near-infrared Reflectance Spectroscopy

  • Ko, H.J.;Choi, H.L.;Park, H.S.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1736-1740
    • /
    • 2004
  • Since the application of relatively high levels of heavy metals in the compost poses a potential hazard to plants and animals, the content of heavy metals in the compost with animal manure is important to know if it is as a fertilizer. Measurement of heavy metals content in the compost by chemical methods usually requires numerous reagents, skilled labor and expensive analytical equipment. The objective of this study, therefore, was to explore the application of near-infrared reflectance spectroscopy (NIRS), a nondestructive, cost-effective and rapid method, for the prediction of heavy metals contents in compost. One hundred and seventy two diverse compost samples were collected from forty-seven compost facilities located along the Han river in Korea, and were analyzed for Cr, As, Cd, Cu, Zn and Pb levels using inductively coupled plasma spectrometry. The samples were scanned using a Foss NIRSystem Model 6500 scanning monochromator from 400 to 2,500 nm at 2 nm intervals. The modified partial least squares (MPLS), the partial least squares (PLS) and the principal component regression (PCR) analysis were applied to develop the most reliable calibration model, between the NIR spectral data and the sample sets for calibration. The best fit calibration model for measurement of heavy metals content in compost, MPLS, was used to validate calibration equations with a similar sample set (n=30). Coefficient of simple correlation (r) and standard error of prediction (SEP) were Cr (0.82, 3.13 ppm), As (0.71, 3.74 ppm), Cd (0.76, 0.26 ppm), Cu (0.88, 26.47 ppm), Zn (0.84, 52.84 ppm) and Pb (0.60, 2.85 ppm), respectively. This study showed that NIRS is a feasible analytical method for prediction of heavy metals contents in compost.

Effects of Chemical Contents Variation in Covered Barley Seed on Near Infrared Reflectance Spectroscopy (겉보리 종실 성분 변이가 근적외 분광분석치에 미치는 영향)

  • 김병주;박의호;정찬식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.354-361
    • /
    • 1996
  • Near Infrared Reflectance Spectroscopy(NIRS) is accepted as today's most versatile method for rapid chemical analysis. The technique offers rapid multicomponent analysis. This study was conducted to improve the efficiency of quality analysis in covered barley grain, and to search for the effects of chemical components variation in covered barley grain on NIRS. Among the three groups with different range in the contents, each equation for starch contents increased standard error of prediction(SEP) and increased correlation coefficient from 0.872 to 0.883. According as, $\beta$-glucan and protein contents decreased SEP and increased correlation coefficient by expanded chemical components variation. Effective equation for ash contents analysis was obtained from group 3. Among the covered barley chemical components, starch and ash contents were required to conduct futher studies in term of accuracy and variation of contents. It was concluded that NIRS method would be applicable for the rapid determination of $\beta$-glucan and protein contents in covered barley grains.

  • PDF

Determination of Phenobarbital in Intact Phenobabital Tablets using NIRS (근적외선 분광광도법을 이용한 페노바르비탈정제의 정량법에 관한 연구)

  • Cha, Ki-Won;Ze, Keum Ryon;Youn, Mi Ok;Lee, Su Jung;Choi, Hyun Cheol;Kim, Ho Jung;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • This paper describes a rapid determination of phenobarbital in intact phenobarbital tablets using partial least squares regression(PLSR) method of transmittance spectrum of near infrared (NIR) compared with the analytical data of liquid chromatograpy. The linearity, concentration range and precision of this analytical method are studied. The correlation coefficient of the calibration curve is 0.9983 and the standard error of calibration(SEC) is 0.14 %. Intra-day precision and Inter-day precision obtained in this method are CV = 0.45, CV =0.56, respectively.

The Prediction of Blending Ratio of Cut Tobacco, Expanded Stem, and Expanded Cut Tobacco in Cigarettes using Near Infrared Spectroscopy (근적외분광법을 이용한 권련 중 일반각초, 팽화주맥 및 팽화각초 배합비 분석)

  • 김용옥;정한주;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This study was carried out to predict blending ratio of cut tobacco(CT), expanded stem(ES), and expanded cut tobacco(ECT) in cigarettes. CT, ES, and ECT samples from A brand were, ground and blended with reference to A blending ratio, and scanned by near infrared spectroscopy(NIRSystem Co., Model 6500). Calibration equations were developed and then determined blending ratio by NIRS. The standard error of calibration(SEC) and performance(SEP) of C factory samples between NIRS and known blending ratio were 0.97%, 1.93% for CT, 0.50%, 1.12 % for ES and 0.68%, 1.10% for ECT, respectively. The SEP of CT, ES and ECT of Band D factory samples determined by C factory calibration equation were more inaccurate than those of C factory samples determined by C factory calibration equations. These results were caused by the difference of CT, ES and ECT spectra followed by each factory. The SEP of CT, ES and ECT of Band D factories determined by calibration equations derived from each factory samples were more accurate than those of determined by calibration equation derived from C factory samples. Each factory SEP of CT, ES and ECT determined by calibration equation derived from all calibration samples(B+C+D factory) was similar to that determined by calibration equation derived from each factory samples. To improve the analytical inaccuracy caused by spectra difference, we need to apply a specific calibration equation for each factory sample. Data in development of specific calibrations between sample and NIRS spectra might supply a method for rapid determination of blending ratio of CT, ES, and ECT.

  • PDF

Use of Near-Infrared Spectroscopy for Estimating Fatty Acid Composition in Intact Seeds of Rapeseed

  • Kim, Kwan-Su;Park, Si-Hyung;Choung, Myoung-Gun;Jang, Young-Seok
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • Near-infrared spectroscopy(NIRS) was used as a rapid and nondestructive method to determine the fatty acid composition in intact seed samples of rapeseed(Brassica napus L.). A total of 349 samples(about 2 g of intact seeds) were scanned in the reflectance mode of a scanning monochromator, and the reference values for fatty acid composition were measured by gas-liquid chromatography. Calibration equations for individual fatty acids were developed using the regression method of modified partial least-squares with internal cross validation(n=249). The equations had low SECV(standard errors of cross-validation), and high $R^2$(coefficient of determination in calibration) values(>0.8) except for palmitic and eicosenoic acid. Prediction of an external validation set(n=100) showed significant correlation between reference values and NIRS estimated values based on the SEP(standard error of prediction), $r^2$(coefficient of determination in prediction), and the ratio of standard deviation(SD) of reference data to SEP. The models developed in this study had relatively higher values(> 3.0 and 0.9, respectively) of SD/SEP(C) and $r^2$ for oleic, linoleic, and erucic acid, characterizing those equations as having good quantitative information. The results indicated that NIRS could be used to rapidly determine the fatty acid composition in rapeseed seeds in the breeding programs for high quality rapeseed oil.

  • PDF

Statistical Treatment on Amylose and Protein Contents in Rice Variety Germplasm Based on the Data Obtained from Analysis of Near-Infrared Reflectance Spectroscopy (NIRS)

  • Oh, Sejong;Chae, Byungsoo;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Rauf, Muhammad;Hyun, Do Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.31-31
    • /
    • 2018
  • The purpose of this study was to statistically analyze amylose and protein content of rice variety resources collected from China (1,542), Japan (1,409), Korea (413), and India (287). The statistical analysis was conducted using ANOVA and DMRT based on the data obtained from NIRS analysis. The average amylose contents were 18.85% in Japanese, 19.99% in Korean, 20.27% in Chinese, and 25.46% in Indian resources. The average protein contents were 7.23% in Korean, 7.73% in Japanese, 8.01% in Chinese, and 8.17% in Indian resources. The amylose and protein content using ANOVA showed significant differences at the level of 0.01. The F-test for amylose content was 158.34, and for protein content was 53.95 compared to critical value 3.78. The amylose and protein content using DMRT (p<0.01) showed significant difference between countries. The value of statistical treatment was divided into three groups such as $China^a$, $Korea^a$, $Japan^b$, $India^c$ in amylose and $China^a$, $India^a$, $Japan^b$, $Korea^c$ in protein. Japanese resources had the lowest level of amylose contents, whereas, the lowest level of protein content was found in Korean resources compared to other origins. Indian resources showed the highest level of amylose and protein contents. It is recommended that these results could be helpful to future breeding experiments.

  • PDF

Evaluation of Millet (Panicum miliaceum subsp. miliaceum) Germplasm For Seed Fatty Acids Using Near-Infrared Reflectance Spectroscopy

  • Lee, Young-Yi;Kim, Jung-Bong;Lee, Ho-Sun;Jeon, Young-A;Lee, Sok-Young;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The objective of this study was to rapidly evaluate fatty acids in a collection of millet (Panicum miliaceum subsp. miliaceum) of different origins so that this information could be disseminated to breeders to advance germplasm use and breeding. To develop the calibration equations for rapid and nondestructive evaluation of fatty acid content, near-infrared reflectance spectroscopy (NIRs) spectra (1104-2494 nm) of samples ground into flour ($n$=100) were obtained using a dispersive spectrometer. A modified partial least-squares model was developed to predict each component. For foxtail millet germplasm, our models returned coefficients of determination ($R^2$) of 0.89, 0.89, 0.89, and 0.92 for palmitic acid, oleic acid, linoleic acid, and total fatty acids, respectively. The prediction of the external validation set (n=10) showed significant correlation between references values and NIRs values ($r^2$=0.64, 0.90, 0.79, and 0.89 for palmitic acid, oleic acid, linoleic acid, and total fatty acids, respectively). Standard deviation/standard errors of cross-validation (SD/SECV) values were close to 3 (2.62, 2.40, 1.85, and 2.23 for palmitic acid, oleic acid, linoleic acid, and total fatty acids, respectively). These results indicate that these NIRs equations are functional for the mass screening and rapid quantification of the oleic and total fatty acids characterizing millet germplasm. Among the samples, IT153514 showed an especially high content of fatty acids ($48.14mg\;g^{-1}$), whereas IT123909 had a very low content ($34.44mg\;g^{-1}$).

Applications of Discrete Wavelet Analysis for Predicting Internal Quality of Cherry Tomatoes using VIS/NIR Spectroscopy

  • Kim, Ghiseok;Kim, Dae-Yong;Kim, Geon Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • Purpose: This study evaluated the feasibility of using a discrete wavelet transform (DWT) method as a preprocessing tool for visible/near-infrared spectroscopy (VIS/NIRS) with a spectroscopic transmittance dataset for predicting the internal quality of cherry tomatoes. Methods: VIS/NIRS was used to acquire transmittance spectrum data, to which a DWT was applied to generate new variables in the wavelet domain, which replaced the original spectral signal for subsequent partial least squares (PLS) regression analysis and prediction modeling. The DWT concept and its importance are described with emphasis on the properties that make the DWT a suitable transform for analyzing spectroscopic data. Results: The $R^2$ values and root mean squared errors (RMSEs) of calibration and prediction models for the firmness, sugar content, and titratable acidity of cherry tomatoes obtained by applying the DWT to a PLS regression with a set of spectra showed more enhanced results than those of each model obtained from raw data and mean normalization preprocessing through PLS regression. Conclusions: The developed DWT-incorporated PLS models using the db5 wavelet base and selected approximation coefficients indicate their feasibility as good preprocessing tools by improving the prediction of firmness and titratable acidity for cherry tomatoes with respect to $R^2$ values and RMSEs.

Application of Near-Infrared Reflectance Spectroscopy to Rapid Determination of Seed Fatty Acids in Foxtail Millet (Setaria italica (L.) P. Beauv) Germplasm

  • Lee, Young Yi;Kim, Jung Bong;Lee, Sok Young;Lee, Ho Sun;Gwag, Jae Gyun;Kim, Chung Kon;Lee, Yong Beom
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.448-454
    • /
    • 2010
  • The objective of this study was to rapidly evaluate fatty acids in a collection of foxtail millet (Setaria italica (L.) P. Beauv) of different origins so that this information could be disseminated to breeders to advance germplasm use and breeding. To develop the calibration equations for rapid and nondestructive evaluation of fatty acid content, near-infrared reflectance spectroscopy (NIRs) spectra (1104-2494 nm) of samples ground into flour (n=100) were obtained using a dispersive spectrometer. A modified partial least-squares model was developed to predict each component. For foxtail millet germplasm, our models returned coefficients of determination ($R^2$) of 0.91, 0.89, 0.98 and 0.98 for strearic acid, oleic acid, linoleic acid, and total fatty acids, respectively. The prediction of the external validation set (n=10) showed significant correlation between references values and NIRs values ($r^2=0.97$, 0.91, 0.99 for oleic, linoleic, and total fatty acids, respectively). Standard deviation/standard error of cross-validation (SD/SECV) values were greater than 3 (3.11, 5.45, and 7.50 for oleic, linoleic, and total fatty acids, respectively). These results indicate that these NIRs equations are functional for the mass screening and rapid quantification of the oleic, linolenic, and total fatty acids characterizing foxtail millet germplasm. Among the samples, IT153491 showed an especially high content of fatty acids ($84.06mg\;g^{-1}$), whereas IT188096 had a very low content ($29.92mg\;g^{-1}$).