• Title/Summary/Keyword: NIR (near-infrared) spectra

Search Result 226, Processing Time 0.028 seconds

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

The Use of Near Infrared Reflectance Spectroscopy (NIRS) for Broiler Carcass Analysis

  • Hsu, Hua;Zuidhof, Martin J.;Recinos-Diaz, Guillermo;Wang, Zhiquan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1510-1510
    • /
    • 2001
  • NIRS uses reflectance signals resulting from bending and stretching vibrations in chemical bonds between carbon, nitrogen, hydrogen, sulfur and oxygen. These reflectance signals are used to measure the concentration of major chemical composition and other descriptors of homogenized and freeze-dried whole broiler carcasses. Six strains of chicken were analyzed and the NIRS model predictions compared to reference data. The results of this comparison indicate that NIRS is a rapid tool for predicting dry matter (DM), fat, crude protein (CP) and ash content in the broiler carcass. Males and females of six commercial strain crosses of broiler chicken (Gallus domesticus) were used in this study (6$\times$2 factorial design). Each strain was grown to 16 weeks of age, and duplicate serial samples were taken for body composition analysis. Each whole carcass was pressure-cooked, homogenized, and a representative sample was freeze-dried. Body composition determined as follows: DM by oven dried method at 105$^{\circ}C$ for 3 hours, fat by Mojonnier diethyl ether extraction, CP by measuring nitrogen content using an auto-analyzer with Kjeldhal digest and ash by combustion in a muffle furnace for 24 hour at 55$0^{\circ}C$. These homogenized and freeze-dried carcass samples were then scanned with a Foss NIR Systems 6500 visible-NIR spectrophotometer (400-2500nm) (Foss NIR Systems, Silver Spring, MD., US) using Infra-Soft-International, ISI, WinISl software (ISI, Port Matilda, US). The NIRS spectra were analyzed using principal component (PC) analysis. This data was corrected for scatter using standard normal “Variate” and “Detrend” technique. The accuracy of the NIRS calibration equations developed using Partial Least Squares (PLS) for predicting major chemical composition and carcass descriptors- such as body mass (BM), bird dry matter and moisture content was tested using cross validation. Discrimination analysis was also used for sex and strain identification. According to Dr John Shenk, the creator of the ISI software, the calibration equations with the correlation coefficient, $R^2$, between reference data and NIRS predicted results of above 0.90 is excellent and between 0.70 to 0.89 is a good quantifying guideline. The excellent calibration equations for DM ($R^2$= 0.99), fat (0.98) and CP (0.92) and a good quantifying guideline equation for ash (0.80) were developed in this study. The results of cross validation statistics for carcass descriptors, body composition using reference methods, inter-correlation between carcass descriptors and NIRS calibration, and the results of discrimination analysis for sex and strain identification will also be presented in the poster. The NIRS predicted daily gain and calculated daily gain from this experiment, and true daily gain (using data from another experiment with closely related broiler chicken from each of the six strains) will also be discussed in the paper.

  • PDF

Development of Moisture Content Prediction Model for Larix kaempferi Sawdust Using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 낙엽송 목분의 함수율 예측 모델 개발)

  • Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kang, Kyu-Young;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • The moisture content of sawdust must be measured accurately and controlled appropriately during storage and transportation because biological degradation could be caused by improper moisture. In this study, to measure the moisture contents of Larix kaempferi sawdust, the near-infrared reflectance spectra (Wavelength 1000-2400 nm) of sawdust were used as detection parameter. After acquiring the NIR reflection spectrum of specimens which were humidified at each relative humidity condition ($25^{\circ}C$, RH 30~99%), moisture content prediction model was developed using mathematical preprocessings (e.g. smoothing, standard normal variate) and partial least squares (PLS) analysis with the acquired spectrum data. High reliability of the MC regression model with NIR spectroscopy was verified by cross validation test ($R^2$ = 0.94, RMSEP = 1.544). The results of this study show that NIR spectroscopy could be used as a convenient and accurate method for the nondestructive determination of moisture content of sawdust, which could lead to optimize wood utilization.

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves

  • Ngo, Viet-Duc;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • Objective of the study was to compare reflectance spectrum in the blade and the vein parts of cabbage and kale leaves. A total 6 cabbage and kale leaves were taken from a plant factory in Chungnam National University, Korea. Spectra data were collected with a UV/VIS/NIR spectrometer (model: USB2000, Ocean Optics, FL, USA) in the wavelength region of 190 - 1130 nm. Median filter smoothing method was selected to preprocess the obtained spectra data. We computed reflectance difference by subtraction of averaged spectrum from individual spectrum. To estimate correlation at different parts of cabbage and kale leaves, cross - correlation method was used. Differences between cabbage and kale leaves are clearly manifested in the green, red and near - infrared ranges. The percent reflectance of cabbage leaves in the NIR wavelength band was higher than that of kale leaves. Reflectance in the blade part was higher than in the vein part by 18%. Reflectance difference in the different parts of cabbage and kale leaves were clear in all of the wavelength bands. Standard deviation of reflectance difference in the vein part was greater for kale, while the value in the blade part was greater for cabbage leaves. Standard deviation of cross - correlation increased from 0.092 in the first sensor (UV/VIS) and 0.007 in the second sensor (NIR) to 0.099 and 0.015, respectively.

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF

Identification of country of production of veal meat by NIRS and by meat quality measurements.

  • Berzaghi, Paolo;Serva, Lorenzo;Gottardo, Flaviana;Cozzi, Giulio;Andrighetto, Igino
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1255-1255
    • /
    • 2001
  • The study used 356 veal calf meat samples received from Finland (n=16), France (n=109), Italy (n=81) and The Netherlands (n=150). Calves were raised under experimental protocols that compared feeding and housing practices normally used in each county to treatments aiming at improving animal welfare. Samples were taken at the $8^{th}$ rib of Longissimus thoracis muscle 24h after slaughter, They were kept refrigerated ( $2-4^{\circ}C$) under vacuum package for 6d and then frozen ($-20^{\circ}C$) until meat quality evaluation. Measurements included pH, color (Hunter Lab system), shear force, chemical composition (DM, Ash, Ether Extract, collagen and haematin content), weight and area cooking losses and a sensory evaluation by a group of panelists. A sample of meat was ground with a blade mill and scanned in duplicate between 1100 and 1498 nm (FOSS NIR Systems 5000). WinISI software was used to develop a discriminating equation using NIR spectra (SNV-detrend, derivative=1, gap=4nm, smooth=4nm). The Proc ANOVA and DISCRIM of SAS were used for all the laboratory determinations. County of production had a significant (P<0.01) effect on all the parameters. However, discriminant analysis using any or few laboratory parameters resulted in great errors of county classification. A more accurate (98.8%) classification was obtained only when using all the laboratory parameters. NIRS classified correctly 354 of the 356 samples (99.4%). Provided with a larger data set, NIRS could be used to identify country of production of veal meat.

  • PDF

COMPARISON OF LINEAR AND NON-LINEAR NIR CALIBRATION METHODS USING LARGE FORAGE DATABASES

  • Berzaghi, Paolo;Flinn, Peter C.;Dardenne, Pierre;Lagerholm, Martin;Shenk, John S.;Westerhaus, Mark O.;Cowe, Ian A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1141-1141
    • /
    • 2001
  • The aim of the study was to evaluate the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural network (ANN) on the prediction of chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with information relative to moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected with 10 different Foss NIR Systems instruments, which were either standardized or not standardized to one master instrument. The spectra were trimmed to a wavelength range between 1100 and 2498 nm. Two data sets, one standardized (IVAL) and the other not standardized (SVAL) were used as independent validation sets, but 10% of both sets were omitted and kept for later expansion of the calibration database. The remaining samples were combined into one database (n=21,696), which was split into 75% calibration (CALBASE) and 25% validation (VALBASE). The chemical components in the 3 validation data sets were predicted with each model derived from CALBASE using the calibration database before and after it was expanded with 10% of the samples from IVAL and SVAL data sets. Calibration performance was evaluated using standard error of prediction corrected for bias (SEP(C)), bias, slope and R2. None of the models appeared to be consistently better across all validation sets. VALBASE was predicted well by all models, with smaller SEP(C) and bias values than for IVAL and SVAL. This was not surprising as VALBASE was selected from the calibration database and it had a sample population similar to CALBASE, whereas IVAL and SVAL were completely independent validation sets. In most cases, Local and ANN models, but not modified PLS, showed considerable improvement in the prediction of IVAL and SVAL after the calibration database had been expanded with the 10% samples of IVAL and SVAL reserved for calibration expansion. The effects of sample processing, instrument standardization and differences in reference procedure were partially confounded in the validation sets, so it was not possible to determine which factors were most important. Further work on the development of large databases must address the problems of standardization of instruments, harmonization and standardization of laboratory procedures and even more importantly, the definition of the database population.

  • PDF

Discrimination of Internally Browned Apples Utilizing Near-Infrared Non-Destructive Fruit Sorting System (근적외선 비파괴 과일 선별 시스템을 활용한 내부 갈변 사과의 판별)

  • Kim, Bal Geum;Lim, Jong Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.208-213
    • /
    • 2021
  • There is a lack of studies comparing the internal quality of fruit with its external quality. However, issues of internal quality of fruit such as internal browning are important. We propose a method of classifying normal apples and internally browned apples using a near-infrared (NIR) non-destructive system. Specifically, we found the optimal wavelength and characteristics of the spectra for determining the internal browning of Fuji apples. The NIR spectra of apples were obtained in the wavelength range of 470-1150 nm. A group of normal apples and a group of internally browned apples were identified using principal component analysis (PCA), and a partial least squares regression (PLSR) analysis was performed to develop and evaluate the discriminant model. The PCA analysis revealed a clear difference between the normal and internally browned apples. From the PLSR, the correlation coefficient of the predictive model without pretreatment was determined to be 0.902 with an RMSE value of 0.157. The correlation coefficient of the predictive model with pretreatment was 0.906 with an RMSE value of 0.154. The results show that this model is suitable for classifying normal and internally browned apples and that it can be applied for the sorting and evaluation of agricultural products for internal and external defects.

Identification of Foreign Objects in Soybeans Using Near-infrared Spectroscopy (근적외선 분광법을 이용한 콩과 이물질의 판별)

  • Lim, Jong-Guk;Kang, Sukwon;Lee, Kangjin;Mo, Changyeon;Son, Jaeyong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.136-142
    • /
    • 2011
  • The objective of this research was to classify intact soybeans and foreign objects using near-infrared (NIR) spectroscopy. Intact soybeans and foreign objects were scanned using a NIR spectrometer equipped with scanning monochromator. NIR spectra of intact soybeans and foreign objects in the wavelength range from 900 to 1800 nm were collected. The classification of intact soybeans and foreign objects were conducted by using partial least-square discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) multivariate methods. Various types of data pretreatments were tested to develop the classification models. Intact soybeans and foreign objects were successfully classified by the PLS-DA prediction model with mean normalization pretreatment. These results showed the potential of NIR spectroscopy combined with multivariate analysis as a method for classifying intact soybeans and foreign objects.