• Title/Summary/Keyword: NIPS

Search Result 59, Processing Time 0.024 seconds

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

Preparation of Asymmetric Membranes by Addition of Nonsolvent (비용매 첨가제를 이용한 비대칭막의 제조)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • High performance polysulfone microfiltration membranes with a high were successfully prepared by vapor induced phase separation (VIPS) coupled with non-solvent induced phase separation (NIPS) process. Asymmetric Membranes were prepared with PSF/DMF/PVP/PEG/DMSO/water mixed solutions and water/IPA coagulant. PSF, DMF, PVP, PEG, DMSO, water was used as a membrane polymer, a solvent, a hydrophilic polymer additive, a polar protic liquid polymer, a polar aprotic nonsolvent, and a polar protic nonsolvent in the casting solution, respectively. The addition of polar aprotic nonsolvents, and polar protic nonsolvents is a convenient and effective method to control membrane structure. In order to control the morphology of polymeric membranes, the spontaneous emulsification induced by drawing water vapor into the exposed casting solution surface has been used. Control of the internal morphology of polymeric membranes by using mixed coagulation solution such as water and IPA is discussed in the present work. The pure water permeability, pore size distribution, surface hydrophilicity and membrane morphology were investigated. Due to the addition of DMSO to casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 1000-1800 LMH.

Pain Reducing Effects of Dextrose-coated Pacifier on Venipuncture in Premature Infants (포도당 코팅 노리개 젖꼭지 제공이 미숙아의 정맥주사 시 통증 반응에 미치는 효과)

  • Seo, Jung-Suk;Kwon, In-Soo;Kim, Hee;Jung, Young-Ran;Jo, Sung-Jin;Hwang, Ju-Young;Kang, Hyun-Sun
    • Korean Parent-Child Health Journal
    • /
    • v.13 no.2
    • /
    • pp.78-85
    • /
    • 2010
  • Purpose: The purpose of this study was to examine the pain reducing effects of the dextrose-coated pacifier on venipuncture in premature infants. Methods: The design of this study is a nonequivalent control group pretest-posttest design and a crossover trial. The analysed cases were 40 premature infants (20 in experimental group and 20 in control group) in neonatal intensive care unit of a University Hospital, Gyeongnam Province, Korea. The data were collected from April to October, 2009. The experimental treatment was carried out nursing 20% dextrose-coated pacifier on venipuncture for IV injection. The instruments were $O_2$ saturation and heart rate on pulse oxymeter monitor to measure physiologic pain responses, and NIPS to measure behavioral pain responses. Collected data were analyzed with $x_2$ test, t-test using SPSS program. Results: The effects of the 20% dextrose-coated pacifier were found in the physiologic (only heart rate) and behavioral pain response on venipuncture. Conclusion: These finding is suggested that the dextrose-coated pacifier could be an effective nursing intervention for reducing pain on venipuncture in premature infants.

  • PDF

The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane

  • Kim, Kyung Hee;Lee, Ju Sung;Hong, Hyun Pyo;Han, Jun Young;Park, Jin-Won;Min, ByoungRyul
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.423-437
    • /
    • 2015
  • Polyvinylidene fluoride/fullerene nanoparticle (PVDF/$C_{60}$) composite microfiltration (MF) membranes were fabricated by a non-solvent induced phase separation (NIPS) using N, N-dimethylacetamide (DMAc) as solvent and deionized water (DI) as coagulation solution. Polyvinylpyrrolidone (PVP) was added to the casting solution to form membrane pores. $C_{60}$ was added in increments of 0.2% from 0.0% to 1.0% to produce six different membrane types: one pristine PVDF membrane type with no $C_{60}$ added as control, and five composite membrane types with varying $C_{60}$ concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. The mechanical strength, morphology, pore size and distribution, hydrophilicity, surface property, permeation performance, and fouling resistance of the six membranes types were characterized using respective analytical methods. The results indicate that membranes containing $C_{60}$ have higher surface porosity and pore density than the pristine membrane. The presence of numerous pores on the membrane caused weaker mechanical strength, but the water flux of the composite membranes increased in spite of their smaller size. Initial flux and surface roughness reached the maximum point among the composite membranes when the $C_{60}$ concentration was 0.6 wt.%.

Preparation of Organic-inorganic Hybrid PES Membranes using Fe(II) Clathrochelate (Fe(II) clathrochelate을 이용한 유.무기 PES 복합막의 제조)

  • Jung, Bo Ram;Son, Yeji;Lee, Yong Taek;Kim, Nowon
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.80-91
    • /
    • 2013
  • Metal-templated condensation of cyclohexanedione dioxime and phenylboronic acid in the presence of Fe(II) sulfate heptahydrate proceeds cleanly in methanol to furnish the Fe(II) clathrochelate. An organic/inorganic hybrid membranes composed of Fe(II) clathrochelate and polyethersulfone was prepared by using phase inversion method. For membrane preparation, the Fe(II) clathrochelate was highly soluble (3~5 g/L) in DMF, NMP, and DMAc, which meets the requirements for the solubility of metal complexes in polar aprotic solvent used in membrane preparation. It was stable even in the presence of strong acids, such as trifluorosactic acid (pKa = 0.3). It was characterized by UV-vis spectroscopy, and their stability in solution phase studied in the presence of (i) strong acids or (ii) competing chelates. Organic/inorganic hybrid membranes were prepared with polyethersulfone, polyvinylpyrrolidone, p-toluenesulfonic acid, Fe(II) clathrochelate and DMF by using nonsolvent induced phase inversion method. The addition of Fe(II) clathrochelate leads increase of surface pore density, mean pore size and flux. We can obtain highly asymmetric membranes by addition of Fe(II) clathrochelate.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

The Study of the Printability on the Phenol Free Heat-Set Web Inks(III) - Effects of the Emulsification of Ink on Print Quality - (Phenol Free Heat-Set 윤전 잉크의 인쇄적성에 관한 연구 (제3보) - 잉크 유화가 인쇄품질에 미치는 영향 -)

  • Ha, Young-Baeck;Oh, Sung-Sang;Lee, Won-Jae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • The lithographic process depends on a satisfactory ink-in-water emulsion being formed during printing and the speed of wet presses makes the choice of fountain solution vitally important as the ink and fount must react quickly to form a stable emulsion. Ink and water come into contact with each other on the rolls of the press and are forced together in the roll nips. The water is not soluble in the ink since it is slightly fat. Instead, an emulsion is formed, a heterogeneous mass consisting of small water drops mixed into the ink, if the water feed is too great. This emulsification can affect the properties of an off-set ink and negatively affect the printability. So we investigated the effects of the emulsification of phenol free heat-set ink and existing heat-set ink on printed quality, such as amount of ink transfer, printed density, print-through and uniformity. We used Duke emulsification tester for the emulsification of inks, and used IGT printability tester for printed quality. The printed quality were measured by densitometer and were evaluated by the image analysis system. Compared to conventional printing ink, phenol-free ink showed better results of the printability at the emulsification.

Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane (Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가)

  • Im, Kwang Seop;Kim, Tae Han;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • The purpose of this study was to identify the cleaning efficiency of fouled multi-bore hollow fiber membranes after purification of contaminated water. The PSf (polysulfone) based hollow fiber membrane manufactured by Pure & B Tech Co., Ltd. Was used in this study. The antifouling characteristics during the water treatment were studied using bovine serum albumin (BSA) as a model compound and the chemical resistance was evaluated after long-term impregnation in sodium hypochlorite (NaOCl) solution and Citric acid to understand the long term stability of the membranes. Water permeability and mechanical strength of the membranes after prolonged chemical exposure was measured to observe the change in mechanical stability and long term performance of the membrane. moreover, the recovery efficiency was also evaluated after chemical enhanced backwashing of a membrane contaminated with bovine serum albumin. The PSf hollow fiber membrane exhibited excellent chemical resistance, and it was confirmed that the efficiency of sodium hypochlorite was high as a result of chemical enhanced backwashing.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation (수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성)

  • Kwon, Hyeon Woong;Im, Kwang Seop;Kim, Ji Hyeon;Kim, Seong Heon;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.456-470
    • /
    • 2021
  • In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.