비간섭적 개별 전기 기기 부하 식별(NILM)은 단일 미터기에서 측정한 총 소비 전력을 사용하여 가정이나 회사에서 개별 전기 기기의 소비 전력과 사용 시간을 효율적으로 모니터링할 수 있는 방법이다. 본 논문에서는 스마트팜의 소비 전력 데이터 취득 시스템에서 LTE 모뎀을 통해 서버로 수집된 총 소비 전력량, 개별 전기 기기의 전력량을 HDF5 형태로 변환하고 NILM 분석을 수행하였다. NILM 분석은 오픈소스를 사용하여 잡음제거 오토인코더(Denoising Autoencoder), 장단기 메모리(Long Short-Term Memory), 게이트 순환 유닛(Gated Recurrent Unit), 시퀀스-투-포인트(sequence-to-point) 학습 방법을 사용하였다.
본 연구에서는 가정 내 모든 기기가 연결된 하나의 전력선을 모니터링 하여 그 전력선에 연결된 기기 각각의 젼력 소비 상황을 모니터링 하는 NILM(Non-Intrusive Load Monitoring) 시스템 구축에 필요한 신호 분석 알고리즘에 대한 연구를 수행하였다. 본 연구에서 제안한 신호 분석 알고리즘은 전력선에서 관찰된 여러 기기의 전력 소비 패턴이 혼합된 혼합 전력 패턴을 복수개의 시간 구간으로 분리하고, 연속된 시간 구간 사이의 신호 차이를 구한 후, 이 차이 신호를 분석하여 어떤 장치가 현재 시간 구간에서 동작 중인지를 알아낸다. 이 때 시간 구간을 충분히 작게 하고, 신호 분석에 사용되는 특징들이 독립적이고 additivity 특징을 가지도록 선정한다면, 이 차이 신호에는 한 장치의 특징만이 남아 있으므로, 동시에 동작할 수 있는 장치 조합의 수 $2^N$개가 아닌 장치 N 개에 해당하는 특징만을 이용하여 혼합 신호를 분석할 수 있다. 이를 통하여 장치 개수가 증가하더라도 연산량 역시 산술적으로 증가하는 합리적인 확장성을 확보할 수 있다. 실제 가정에서 각 장치의 데이터 패턴을 채집한 후 이를 인위적으로 조합하여 만든 실험 데이터를 활용하여 제안한 방법을 검증하였다. 검증 결과 4개의 장치가 동시에 동작하고 그 장치의 특징들이 제안한 알고리즘에서 제시한 기준을 만족하는 경우, 비록 제한된 실험이었지만 완벽한 분류 성공률을 보였다. 제안된 알고리즘을 실제 사용하기 위해서는 장치의 수를 증가하고, 시간 구간을 조정하며, 신호 혼합 패턴을 다양하게 한 실증적인 연구가 더 필요하다. 하지만 이 경우 본 연구에서 제안한 기준을 만족하는 특징을 선택한다면, 그렇지 않은 경우에 비하여, 일정 정도 성능이 보장되는 NILM 시스템을 구축할 수 있을 것으로 기대된다.
Power metering and monitoring system is a basic element of Smart Grid technology. This paper proposes a new Non-Intrusive Load Monitoring (NILM) method for a residential buildings sector using the measured total active power consumption. Home electrical appliances are classified by ON/OFF state models, Multi-state models, and Composite models according to their operational characteristics observed by experiments. In order to disaggregate the operation and the power consumption of each model, an algorithm which includes a switching function, a truth table matrix, and a matching process is presented. Typical profiles of each appliances and disaggregation results are shown and classified. To improve the accuracy, a Time Lagging (TL) algorithm and a Permanent-On model (PO) algorithm are additionally proposed. The method is validated as comparing the simulation results to the experimental ones with high accuracy.
본 논문은 분산자원 집합 거래시장의 활성화와 에너지 관리의 중요성이 증가되면서 에너지 관리 모니터링 기술로서 합산된 전체 전력으로부터 각각의 가전제품의 전력을 찾아내는 비 침입 부하 모니터 기법을 제안한다. 본 논문에서는 데이터 전처리를 통해 각 가전제품들의 power on-off상태가 나오도록 한다. 이러한 데이터를 LSTM을 모델로 사용하여 각 가전제품들의 power on-off 상태를 예측한다. 예측한 상태들을 데이터 후처리를 한 후, 실제 상태들과 비교하여 정확도를 측정한다. 본 논문에서는 전자제품의 개수, 데이터 후처리 방법과 Time step size를 다르게 하여 정확도를 측정하여 비교한다. 전자 제품의 개수가 6개이고, Round함수로 데이터 후처리 방법을 사용하고, Time step size는 6으로 설정하였을 때, 가장 높은 정확도가 나온 것으로 측정되었다.
비간섭 전력부하 감시 알고리즘은 메인선의 총 전력 사용량만으로 개별 전기 기기들의 전력 사용량을 추론할 수 있다. 이런 알고리즘을 개발하기 위해서는 개별 기기의 전력사용 패턴 데이터와 이들 기기의 다양한 조합 전력사용 패턴 데이터가 필요하다. 본 논문에서는 스마트팜용 비간섭 전력부하 감시 알고리즘개발에 필요한 전력사용 패턴 데이터 취득시스템 개발방법을 제시하였다. 데이터 취득시스템은 매초마다 개별 전기 기기들의 전력 사용량과 다양한 조합의 시나리오에 따른 전력 사용량을 동시에 측정할 수 있도록 되어 있다. 측정된 데이터는 LTE 망을 통하여 스마트팜 외부에서 원격으로 모니터링이 가능하며, 측정된 데이터는 외부 서버에 저장된다.
Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.
가전기기별 에너지 사용정보를 제공함으로써 가정에서 효율적인 에너지 사용을 유도할 수 있다. 가전기기별 사용정보를 효과적으로 제공하기 위해서는 NILM (Non-Intrusive Load Monitoring) 기법이 필요하다.본 논문에서는 개별 가전기기 분류단계에서 쓰이는 DTW(Dynamic Time Warping) 기법을 소개한다. DTW 기법은 다른 두 시계열 데이턴간의 유사도를 측정하는 패턴인식 기법 중 하나이다. 이 유사도를 이용하여 가전기기의 동작여부를 판별하고 분류를 수행한다.
본 연구에서는 가전기기 5종에 대해 실제 측정 전력 데이터를 이용하여 딥러닝 기반의 NILM 기법을 제안하고 그 효용성을 검증 하고자 한다. 약 3주간 중앙 전력 측정 장치 및 5종 가전기기(냉장고, 인덕션, TV, 세탁기, 공기청정기)의 유효전력을 개별 측정하였다. 실측 데이터의 전처리 방법을 소개하고 Spectogram 분석을 통해 가전 기기별 특징을 분석하였다. 가전기기별 특징을 학습 데이터셋으로 구성하였다. 중앙 전력 측정 기기와 가전기기 5종에서 측정된 모든 전력 데이터를 시계열 매핑하여 시계열 데이터 분석에 우수한 RNN 계열의 LSTM 신경망을 이용해 학습을 수행하였다. 메인 중앙 전력 측정 장치의 전력 데이터만으로도 5종 전력 신호를 분해해낼 수 있는 알고리즘을 제안하였다.
International Journal of Internet, Broadcasting and Communication
/
제9권2호
/
pp.1-10
/
2017
The high costs of electric vehicle supply equipment (EVSE) and installation are currently a stumbling block to the proliferation of electric vehicles (EVs). The cost-effective solutions are needed to support the expansion of charging infrastructure. In this paper, we develope EV charging system based on the big data analysis of the power consumption patterns. The developed EV charging system is consisted of the smart EV outlet, gateways, powergates, the big data management system, and mobile applications. The smart EV outlet is designed to low costs of equipment and installation by replacing the existing 220V outlet. We can connect the smart EV outlet to household appliances. Z-wave technology is used in the smart EV outlet to provide the EV power usage to users using Apps. The smart EV outlet provides 220V EV charging and therefore, we can restore vehicle driving range during overnight and work hours.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.