• Title/Summary/Keyword: NIL (nanoimprint lithography)

Search Result 88, Processing Time 0.026 seconds

Fabrication of nanometer scale patterning by a scanning probe lithography (SPL에 의한 나노구조 제조 공정 연구)

  • Ryu J.H.;Kim C.S.;Jeong M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.330-333
    • /
    • 2005
  • The fabrication of mold fur nano imprint lithography (NIL) is experimentally reported using the scanning probe lithography (SPL) technique, instead of the conventional I-beam lithography technique. The nanometer scale patterning structure is fabricated by the localized generation of oxide patterning on the silicon (100) wafer surface with a thin oxide layer, The fabrication method is based on the contact mode of scanning probe microscope (SPM) in air, The precision cleaning process is also performed to reach the low roughness value of $R_{rms}=0.084 nm$, which is important to increase the reproducibility of patterning. The height and width of the oxide dot are generated to be 15.667 nm and 209.5 nm, respectively, by applying 17 V during 350 ms.

  • PDF

Deformation Analysis of Roll Mold for Nano-flexible Devices

  • Khaliq, Amin;Tahir, Usama;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.47-50
    • /
    • 2021
  • Nanoimprint lithography (NIL) has revolutionized the fabrications of electronics, photonics, optical and biological devices. Among all the NIL processes, roll-to-roll nanoimprinting is regarded best for having the attributes of low cost, continuous, simple, and energy-efficient process for nanoscale device fabrication. However, large-area printing is limited by the master mold deformation. In this study, a finite element model (FEM) has been constructed to assess the deformation of the roll mold adhesively wrapped on the carbon fiber reinforced material (CFRP) base roll. This study also optimizes the deformations in the metallic roll mold with respect to nip-forces applied in the printing process of nano-fabrication on large scale. The numerical simulations were also conducted to evaluate the deflection in roll mold assembly due to gravity. The results have shown decreasing trend of the deformation with decreasing nip-force. Also, pressure uniformity of about 40% has been optimized by using the current numerical model along with an acceptable deflection value in the vertical axis due to gravity.

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.

Pressure Distribution by Rubber Roller in Large-area UV Imprinting Lithography Process (대면적 UV 임프린팅 공정에서 고무 롤러에 의한 압력분포)

  • Kim, Nam-Woong;Kim, Kug-Weon;Lee, Woo-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we consider the roll-to-plate type imprinting process. In the process a glass mold, which is placed upon the 2nd generation TFT-LCD glass sized substrate(370${\yen}$470 mm), is rolled by a rubber roller to achieve a uniform residual layer. The pressure distribution on the glass mold by rolling of the rubber roller is crucial information to analyze mold deformation, transferred pattern quality, uniformity of residual layer and so forth. In this paper the quantitative pressure distribution induced by rolling of the rubber roller was calculated with finite element analysis under the assumption of Neo-Hookean hyperelastic constitutive relation. Additionally the numerical results were verified by the experiments.

A Study on the Filling Process and Residual Layer Formation in Nanoimprint Lithography Process (나노임프린트 공정에서의 충전과정과 잔류층 형성에 관한 연구)

  • Lee, Ki-Yeon;Kim, Kug-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3835-3840
    • /
    • 2012
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Recently a lot of research for the nanoimprint have been carried out, but almost are about merely experimental result relating to the material operation and the imprint fabrication, and numerical analysis relating to the understanding of the imprint process with R&D level. In this paper, the viscoelasticity analysis model is developed using the finite element method. With this model, the filling process and residual layer formation in nanoimprint are analyzed, which is evaluated by a nanoimprint experiment.

The Review for Various Mold Fabrication toward Economical Imprint Lithography (미세패턴 전사기법을 위한 다양한 몰드 제작법 소개)

  • Kim, Joo-Hee;Kim, Youn-Sang
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.96-104
    • /
    • 2010
  • We suggest here a cost-effective replica fabrication method for transparent and hard molds for imprinting lithography such as NIL and S-FIL. The process starts with the use of a replica hard mold from a master, using a polymer copy as a carrier. The polymer copy as a carrier was treated by soluble process for forming anti-adhesion layer. Duplicated hard molds can eliminate direct contact between a hard master and a patterned polymer on a substrate and the generated contamination of a master during the imprinting process. The replica hard mold exhibits the glass-like properties introduced here, such as transparency and hardness, make it appropriate for nanoimprint lithography and step-and-flash imprint lithography.

A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation (분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.