• Title/Summary/Keyword: NIL

Search Result 372, Processing Time 0.027 seconds

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Apoptosis and Anti-proliferaction by Saussurea lappa and Pharbitis nil in AGS Human Gastric Cancer Cell Line

  • Ko Seong-Gyu;Oh Hee-Rah;Lee Sun-Dong;Hwang Gwi-Seo
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.134-143
    • /
    • 2003
  • Objectives : We performed this study to understand the molecular basis of the antitumor effect of Saussurea lappa, Pharbitis nil, Plantago asiatica and Taraxacum mongolicum, which have been used for cancer treatment in Korean traditional medicine. Design: We analyzed, the effect of these medicinal herbs on proliferation and apoptosis of tumor cells and its association with gene expression, We performed semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR) analysis of cell cycle- and apoptosis-related genes using a gastric cancer cell line AGS. Results : Cell counting assay and $[^3H]thymidine$ uptake analysis showed that Saussurea lappa and Pharbitis nil strongly inhibit cell proliferation of AGS in a dose-dependent manner. Interestingly, gene espression assay revealed that mRNA espression levels of c-Jun, c-Fos, c-Myc, and Cyclin D1 were markedly decreased by Saussurea lappa and Pharbitis nil. Furthermore, Saussurea lappa was identified to activate expression of the p53 tumor suppressor and its downstream effector $p21^{Wafl}$, which leads to $G_1$ cell cycle arrest and apoptosis. These observations suggest that the anticancer effect of Saussurea lappa and Pharbitis nil might be associated with their regulatory capability of tumor-related gene expression.

  • PDF

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia (위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법)

  • Lee, Hokyung;An, Jaehyun;Yoon, Jeongmin;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.813-821
    • /
    • 2017
  • Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

Characterization of a QTL associated with chlorophyll content using progeny from an interspecific cross in rice (Oryza Sativa L.)

  • Shim, Kyu-Chan;Luong, Ngoc Ha;Kim, Sun Ha;Jeon, Yun-A;Lu, Xin;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.23-23
    • /
    • 2017
  • Rice (Oryza sativa L.) is the world's most important cereal crop. In crop plant, chlorophyll content and leaf senescence could affect grain filling and yield. We analyzed a QTL associated with chlorophyll content and delayed leaf senescence using high chlorophyll near isogenic line (HC-NIL). HC-NIL derived from a cross between Oryza sativa cv. Hwaseong as a recurrent parent and wild species O. grandiglumis as a donor parent showed higher chlorophyll content than Hwaseong. To identify QTL associated with chlorophyll content, 58 $F_3$ and 38 $F_4$ lines were developed from a cross between HC-NIL and Hwaseong. For QTL analysis, simple sequence repeat (SSR) markers were used for genotyping and one-way ANOVA was conducted. A QTL for chlorophyll content (qCC2) was detected in chromosome 2 and explained 24.63% of phenotypic variation. The senescence effect of the qCC2 was examined in dark-induced incubation (DII). Detached leaves from Hwaseong and HC-NIL were incubated on 3mM MES buffer (pH 5.8) at $27^{\circ}C$ under complete dark condition. After 3 days of incubation, the Hwaseong leaves turned yellow, but the HC-NIL leaves were green. HC-NIL has higher chlorophyll content with delayed senescence than Hwaseong. These results indicated that qCC2 is associated with stay-green phenotype. To know whether the qCC2 is responsible for leaf functionality, ion leakage test and Fv/Fm measurement were performed. Both experiment results showed that differences were observed between Hwaseong and HC-NIL but it was not statistically significant. These results might suggest that the qCC2 is possibly related to chlorophyll content and non-functional stay-green phenotype.

  • PDF

Dry matter and grain production of a near-isogenic line carrying a 'Takanari' (high yielding, Indica) allele for increased leaf inclination angle in rice with the 'Koshihikari' (Japonica) genetic background

  • San, Nan Su;Otsuki, Yosuke;Adachi, Shunsuke;Yamamoto, Toshio;Ueda, Tadamasa;Tanabata, Takanari;Ookawa, Taiichiro;Hirasawa, Tadashi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.32-32
    • /
    • 2017
  • To increase rice production, manipulating plant architecture, especially developing new high-yielding cultivars with erect leaves, is crucial in rice breeding programs. Leaf inclination angle determines the light extinction coefficient (k) of the canopy. Erect leaves increase light penetration into the canopy and enable dense plantings with a high leaf area index, thus increasing biomass production and grain yield. Because of erect leaves, the high-yielding indica rice cultivar 'Takanari' has smaller k during ripening than 'Koshihikari', a japonica cultivar with good eating quality. In our previous study, using chromosome segment substitution lines (CSSLs) derived from a cross between 'Takanari' and 'Koshihikari', we detected seven quantitative trait loci (QTLs) for leaf inclination angle on chromosomes 1 (two QTLs), 2, 3, 4, 7, and 12. In this study, we developed a near-isogenic line (NIL-3) carrying a 'Takanari' allele for increased leaf inclination angle on chromosome 3 in the 'Koshihikari' genetic background. We compared k, dry matter production, and grain yield of NIL-3 with those of 'Koshihikari' in the field from 2013 to 2016. NIL-3 had higher inclination angles of the flag, second, and third leaves at full heading and 3 (- 4) weeks after full heading and smaller k of the canopy at the ripening stage. Biomass at full heading and leaf area index at full heading and at harvest did not significantly differ between NIL-3 and 'Koshihikari'. However, biomass at harvest was significantly greater in NIL-3 than in 'Koshihikari' due to a higher net assimilation rate at the ripening stage. The photosynthetic rates of the flag and third leaves did not differ between NIL-3 and Koshihikari at ripening. Grain yield was higher in NIL-3 than 'Koshihikari'. Higher panicle number per square meter in NIL-3 contributed to the higher grain yield of NIL-3. We conclude that the QTL on chromosome 3 increases dry matter and grain production in rice by increasing leaf inclination angle.

  • PDF

The Development of Single-Step UV-NIL Tool Using Low Vacuum Environment and Additive Air Pressure (저진공 Single-step UV 나노임프린트 장치 개발)

  • Kim K.D.;Jeong J.H.;Lee E.S.;Bo H.J.;Shin H.S.;Choi W.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.155-156
    • /
    • 2006
  • UV-NIL is a promising technology for the fabrication of sub-100 nm features. Due to non-uniformity of the residual layer thickness (RLT) and a strong possibility of defects, many UV-NIL processes have been developed and some are commercially available at present, most are based on the 'step-and-repeat' nanoimprint technique, which employs a small-area stamp, much smaller than the substrate. This is mainly because, when a large-area stamp is used, it is difficult to obtain acceptable uniform residual layer thickness and/or to avoid defects such as air entrapment. As an attempt to enable UV_NIL with a large-area stamp for high throughput, we propose a new UV-NIL tool that is able to imprint 4 inch wafer in a low vacuum environment at a single step.

  • PDF

Design and Implementation of Nanoimprint Lithography System for Flexible Substrates (유연기판을 위한 나노임프린트리소그래피 시스템 설계)

  • Lim, Hyung-Jun;Lee, Jae-Jong;Choi, Kee-Bong;Kim, Gee-Hong;Ryu, Ji-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.513-520
    • /
    • 2011
  • The NIL processes have been studied to implement low cost, high throughput and high resolution application. A RNIL(roller NIL) is an alternative approach to flat nanoimprint lithography. RNIL process is necessary to transfer patterns on flexible substrates. Compared with flat NIL, RNIL has the advantages of better uniformity, less pressing force, and the ability to repeat the patterning process continuously on a large substrate. This paper studies the design, construction and verification of a thermal RNIL system. The proposed RNIL system can easily adopt the flat shaped hot plate which is one of the most important technologies for NIL. The NIL system can be used to transfer patterns from a flexible stamp to a flexible substrate, from a flexible stamp to a Si substrate, and from a roller stamp to a flexible substrate, etc. Patterning on flexible substrates is one of the key technologies to produce bendable displays, solar cells and other applications.

Investigation of Cooling Effect of Flow Velocity and Cooler Location in Thermal Nanoimprint Lithography

  • Lee, Woo-Young;Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 2012
  • Nanoimprint lithography (NIL) has attracted broad interest as a low cost method to define nanometer scale patterns in recent years. A major disadvantage of thermal NIL is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to improve the cooling performance in NIL process. In this paper, the performance of the cooling system of thermal NIL is numerically investigated by SolidWorks Flow Simulation program. The calculated temperatures of nanoimprint device were verified by the measurements. By using the analysis model, the effects of the change of flow velocity and cooler location on the cooling performance are investigated. For the 6 cases (0.1 m/s, 0.5 m/s, 1 m/s, 3 m/s, 5 m/s, 10 m/s) of flow velocity and for the 6 cases of distances (50 mm, 40 mm, 30 mm, 20 mm, 10 mm, 1 mm) of cooler location, the heat conjugated flow analyses are performed and discussed.