• 제목/요약/키워드: NIH 3T3 fibroblast

검색결과 70건 처리시간 0.028초

Cytotoxic Effects of Partially Purified Substances from Bacillus polyfermenticus SCD Supernatant toward a Variety of Tumor Cell tines

  • Chang, Kyung-Hoon;Park, Jun-Seok;Choi, Jae-Hoon;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.163-166
    • /
    • 2007
  • The cytotoxic effects of partially purified substances from Bacillus polylfermenticus SCD toward a variety tumor cell lines were studied. Cytotoxic activity was determined with regard to the A549 (human lung carcinoma), AGS (human stomach adenocarcinoma), DLD-1 (human colon adenocarcinoma), HEC-1-B (human uterus adenocarcinoma), SW-156 (human kidney carcinoma), and NIH/3T3 (murine normal fibroblast) cell lines using the MTT assay. Cytotoxic substances were partially purified through Diaion HP-20 columns and extracted with methanol or other organic solvents (n-hexane, chloroform, ethylacetate, and butanol). B. polyfermenticus SCD supernatant showed up to 60% inhibition of cell viability fer all five human cancer cell lines tested. When treated with 10 mg/mL of n-hexane, chloroform, ethylacetate, and butanol extract, HEC-1-B cells showed a 25,62,35, and 63% rate of inhibition respectively, and AGS cells showed a 72, 61, 44, and 67% rate of inhibition, respectively. At a concentration of 10 mg/mL, 100% methanol Diaion HP-20 extracts showed inhibition rates of 97.0% toward A-549 cells, 98.1% toward AGS cells, 81.6% toward DLD-1 cells, 83.5% toward HEC-1-B cells, and 92.7% toward SW-156 cells. These results indicate that partially purified fractions from B. polyfermenticus SCD have the potential to inhibit not only colon cancer cells, but also lung, stomach uterus, and kidney cancer cells. Further studies are needed to characterize the cytotoxic substances released in B. polyfermenticus SCD cultures.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Fabrication of PHBV/Keratin Composite Nanofibrous Mats for Biomedical Applications

  • Yuan, Jiang;Xing, Zhi-Cai;Park, Suk-Woo;Geng, Jia;Kang, Inn-Kyu;Yuan, Jiang;Shen, Jian;Meng, Wan;Shim, Kyoung-Jin;Han, In-Suk;Kim, Jung-Chul
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.850-855
    • /
    • 2009
  • Keratin is an important protein used in wound healing and tissue recovery. In this study, keratin was modified chemically with iodoacetic acid (IAA) to enhance its solubility in organic solvent. Poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and modified keratin were dissolved in hexafluoroisopropanol (HFIP) and electrospun to produce nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, field-emission scanning electron microscopy (FE-SEM) and electron spectroscopy for chemical analysis (ESCA). The pure m-keratin mat was cross-linked with glutaraldehyde vapor to make it insoluble in water. The biodegradation test in vitro showed that the mats could be biodegraded by PHB depolymerase and trypsin aqueous solution. The results of the cell adhesion experiment showed that the NIH 3T3 cells adhered more to the PHBV/m-keratin nanofibrous mats than the PHBV film. The BrdU assay showed that the keratin and PHBV/m-keratin nanofibrous mats could accelerate the proliferation of fibroblast cells compared to the PHBV nanofibrous mats.

Improvement of biohistological response of facial implant materials by tantalum surface treatment

  • Bakri, Mohammed Mousa;Lee, Sung Ho;Lee, Jong Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.52.1-52.8
    • /
    • 2019
  • Background: A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods: Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results: The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion: Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.

공여세포 처리 조건이 형질전환 복제돼지 생산에 미치는 영향 (Effects of Donor Cell Treatments on the Production of Transgenic Cloned Piglets)

  • 권대진;곽태욱;오건봉;김동훈;양병철;임기순;김진회;박진기;황성수
    • Reproductive and Developmental Biology
    • /
    • 제35권3호
    • /
    • pp.197-201
    • /
    • 2011
  • This study was conducted to investigate the effects of donor cell treatments on the production of transgenic cloned piglets. Ear fibroblast cell obtained from NIH MHC Inbred minipig was used as control. The GalT knock-out/CD45 knock-in (GalT/CD46) transgenic cell lines were established and used as donor cells. The reconstructed GalT/CD46 embryos were surgically transferred into oviduct of naturally cycling surrogate sows (Landrace ${\times}$ Yorkshire) on the second day of standing estrus. Unlike control (1.2 kV/cm, 75.4%), the fusion rate of the GalT/CDl6 donor cells was significantly higher in 1.5 kV/cm, (84.5%) than that of 1.25 kV/cm, (20.2%) (p<0.01). When the number of the transferred embryos were more than 129, the pregnancy and delivery rates were increased to 13/20 (65%) and 5/20 (25%) compared to less then 100 group [1/6 (16.7%) and 0/6 (0%)], respectively. To analyze the effect of donor cell culture condition on pregnancy and delivery rates, the GalT/CD46 donor cells were cultured with DMEM or serum reduced medium. In serum reduced medium group, the pregnancy and delivery rates were improved to 8/12 (66.7%) and 5/12 (41.7%) compared to DMEM group [3/7 (42.9%) and 0/7 (0%)], respectively. In conclusion, it can be postulated that an appropriate fusion condition and culture system is essential factors to increase the efficiency of the production of transgenic cloned piglets.

Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang;Park, Myoung-Kyu;Jong M. Rhee;Lee, Sang-Jin;Lee, Hai-Bang;Yasuhiko Iwasaki;Nobuo Nakabayashi;Kazuhiko Ishihara
    • Macromolecular Research
    • /
    • 제9권2호
    • /
    • pp.107-115
    • /
    • 2001
  • Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

  • PDF

말초신경재생을 위한 hNGF-$\beta$ recombinant Adenovirus의 제작 및 수종세포주에서 신경성장인자의 발현 (CONSTRUCTION OF HNGF-$\beta$ RECOMBINANT ADENOVIRUS & SCREENING OF ITS EXPRESSION AFTER TRANSFECTION INTO VARIOUS CELL LINES)

  • 고은봉;정헌종;안강민;김윤태;박희정;성미애;김남열;유상배;명훈;황순정;김명진;김성민;장정원;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권5호
    • /
    • pp.446-456
    • /
    • 2005
  • Nerve growth factor(NGF) has a critical role in peripheral nerve regeneration. The aim of this study is to construct a well-functioning hNGF-$\beta$ recombinat adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with adenovirus mediated hNGF-$\beta$ gene transfection into Schwann cells. First PCR associated cloning of GFP-tagged hNGF-$\beta$ which was ligated into E1/E3 deleted adenoviral vector was performed and tranfected into E. coli to construct hNGF-$\beta$ recombinant adenovirus. After production of recombinat adenovirus in a large scale, its transfection efficiency, expression, and function were evaluated using cell lines or primarily cultured cells of HEK293 cells, Schwann cells, fibroblast(NIH3T3) and myocyte(CRH cells). GFP expression was observed in 90% of infected cells compared to uninfected cells. Total mRNA isolated from hNGF-$\beta$ recombinat adenoviru infected cells showed strong RT-PCR band, however, LacZ recombinant adenovirus infected or uninfected cells did not. NGF quantification by ELISA showed a maximal release of 18.865 +/- 0.31ng/mL at 4th day. PC-12 cells exposed to media with hNGF-$\beta$ recombinant adenovirus infected Schwann cell demonstrated higher levels of differentiation compared with controls. We generated hNGF-$\beta$ recombinant adenovirus and induced over expression of NGF successfully in nonneuronal and neuronal cells. Following these result, it is expected to develop an improved treatment strategy peripheral nerve regeneration using the hNGF-$\beta$ gene transfected cells.

인간 무세포성 진피기질 위에 배양한 가토 구강각화상피세포의 중충화와 기저막 형성에 관한 연구 (FORMATION OF BASEMENT MEMBRANE AND STRATIFICATION OF RABBIT ORAL KERATINOCYTES CULTURED ON HUMAN ACELLULAR DERMAL MATRIX)

  • 김용덕;안강민;염학렬;정헌종;김성민;장정원;성미애;박희정;황순정;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권6호
    • /
    • pp.510-522
    • /
    • 2005
  • To assess the clinical applicability of bio-artificial mucosa which was made with autologous oral keratinocytes and human acellular dermal matrix, the formation of basement membrane and stratification of oral keratinocytes were evaluated. Six New Zealand white rabbits (around 2kg in weight) were anesthetized and its buccal mucosa was harvested (1.0 $\times$ 0.5cm size). Oral keratinicytes were extracted and cultured primarily with the feeder layer of pretreated NIH J2 3T3 fibroblast. These confluent cells were innoculated on the human acellular dermal matrix and cultured in multiple layer by air-rafting method. After 3, 5, 7, 10, 14 days of culture, each cultured bio-artificial mucosa was investigated the number of epthelial layer of by H&E stain and toluidine blue stain. The immuhohistochemical methods were used to evaluate the cell division capacity, the formation of basement membrane, and it's property of specific cells (PCNA, cytokeratin 14, laminin). Transmission electromicroscopy was used for the attachment between cells and matrix with the number of hemidesmosome. In result, the numbers of layer of stratified growth of oral keratinocyte cultured on the human acellular dermal matrix and the number of hemidesomal attachment between epithelial cells and human acellular dermal matrix were similar to the layers of normal oral mucosa after 10 days of culture. The cell division rate, basement membrane formation and proliferation rate increased as culture period increased. With these results, bio-artificial mucosa with autologous oral epithelial cells cultured on the acellular dermal matrix had clinically adaptable properties after 10 days' culture and this new bio-artificial mucosa model with relatively short culture time can be expected clinical applicability.

바이오센서 코팅용 Polydimethylsiloxane의 생체외 세포독성 평가 (In vitro Cytotoxicity Evaluation of Polydimethylsiloxane as a Biosensor Coating Material)

  • 박수범;이종환;나경아;정재연;김명진;박성재;현진호
    • 접착 및 계면
    • /
    • 제10권2호
    • /
    • pp.77-83
    • /
    • 2009
  • 생체적용 센서 코팅 재료로서 polydimethylsiloxane (PDMS)를 선정하였으며 합성 및 성형과정에서 용출될 수 있는 잔류 독성 물질의 세포독성을 확인하고자 하였다. ISO 10993-5, Biological evaluation of medical devices-Part 5 : Tests for in vitro cytotoxicity (의료기기의 생물 안정성 평가-제5부: 세포 독성 시험-체외시험)를 통하여 세포 독성 평가를 실시하였다. 양성 대조군으로 organo-tin을 사용하였으며 음성 대조군으로 혈청이 포함되지 않은 RPMI 1640배지를 사용하였다. 고체 시료의 표면적에 대하여 $125{\mu}L/cm^2$가 되도록 혈청이 포함되지 않은 RPMI 1640 배지를 용기에 첨가하였으며 $38^{\circ}C$를 유지하며 일정시간 동안 추출하였다. 세포 독성 평가는 1) NIH 3T3 fibroblast 단일세포층을 형성한 후 추출물을 첨가하는 방법과 2) 세포와 함께 추출물을 넣어 배양하는 방법을 동시에 시행하였다. 세포 형태학적인 변화 관찰과 MTT (tetrazolium dye, 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) 시험법에 의한 세포 활성 측정을 병행함으로써 고체 시료로부터 추출된 물질의 세포독성 여부와 고체시료의 표면에 대한 세포의 감응성도 함께 관찰할 수 있었다.

  • PDF

섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드 (A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts)

  • 이응지;강한아;황보별;정용지;김은미
    • 대한화장품학회지
    • /
    • 제48권2호
    • /
    • pp.157-167
    • /
    • 2022
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 섬유아세포 활성 증가 및 광노화 조건에서의 세포 손상 억제 효과를 확인하였다. 실험 결과 헵타펩타이드 처리 시 섬유아세포 증식 및 세포외기질(extracellular matrix, ECM) 구성 인자의 발현이 증가되었다. 그리고 자외선 A (ultraviolet A, UVA) 조사에 의해 유도된 광노화조건에서 감소된 세포 생존율이 헵타펩타이드에 의해 증가되었고, UVA 조사에 의해 유도된 세포 사멸, 기질금속단백질분해효소-1(matrix metalloproteinases-1, MMP-1) 발현 및 세포 내 활성산소종(reactive oxygen species, ROS) 수준이 헵타펩타이드에 의해 감소되었다. UVA 조사 시 나타나는 transforming growth factor-β (TGF-β)/smad 기전 억제와 그에 따른 ECM 구성 인자 발현 감소 또한 헵타펩타이드에 의해 회복되었다. 또 다른 광노화 유도 조건으로 heat shock을 주었고 헵타펩타이드를 전 처리 하였을 때 heat shock에 의한 mitogen-activated protein kinase (MAPK) 인산화 및 MMP-1 발현이 억제됨을 확인할 수 있었다. 이 결과를 종합해 볼 때, 본 연구의 헵타펩타이드는 섬유아세포의 활성을 촉진하며, 광노화 유도 모델로 사용된 UVA 조사 및 heat shock 조건에서도 세포 내 ROS 억제 효과를 보여 세포 손상에 대한 회복 및 보호 효과를 나타내는 것으로 보인다. 이러한 진피 보호 효과를 갖는 헵타펩타이드는 향 후 신규 화장품 소재로 응용될 수 있을 것으로 기대된다.