• Title/Summary/Keyword: NIE

Search Result 288, Processing Time 0.03 seconds

Assessment of Feasibility for Developing Toxicogenomics Biomarkers by comparing in vitro and in vivo Genomic Profiles Specific to Liver Toxicity Induced by Acetaminophen

  • Kang, Jin-Seok;Jeong, Youn-Kyoung;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Woo-Sun;Lee, Eun-Mi;Shin, Ji-He;Jung, Hai-Kwan;Kim, Seung-Hee;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.177-184
    • /
    • 2007
  • As a possible feasibility of the extrapolation between in vivo and in vitro systems, we investigated the global gene expression from both mouse liver and mouse hepatic cell line treated with hepatotoxic chemical, acetaminophen (APAP), and compared between in vivo and in vitro genomic profiles. For in vivo study, mice were orally treated with APAP and sacrificed at 6 and 24 h. For in vitro study, APAP were administered to a mouse hepatic cell line, BNL CL.2 and sampling was carried out at 6 and 24 h. Hepatotoxicity was assessed by analyzing hepatic enzymes and histopathological examination (in vivo) or lactate dehydrogenase (LDH) assay and morphological examination (in vitro). Global gene expression was assessed using microarray. In high dose APAPtreated group, there was centrilobular necrosis (in vivo) and cellular toxicity with the elevation of LDH (in vitro) at 24 h. Statistical analysis of global gene expression identified that there were similar numbers of altered genes found between in vivo and in vitro at each time points. Pathway analysis identified glutathione metabolism pathway as common pathways for hepatotoxicty caused by APAP. Our results suggest it may be feasible to develop toxicogenomics biomarkers or profiles by comparing in vivo and in vitro genomic profiles specific to this hepatotoxic chemical for application to prediction of liver toxicity.

Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus

  • Nie, Haitao;Wang, Ziyu;You, Jihao;Zhu, Gang;Wang, Hengchang;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.24-34
    • /
    • 2020
  • Objective: The effects of Pleurotus ostreatus on the feed utilization of broad bean stalks (BBS), rape straw (RS), paddy straw (PS), and corn stalk (CS) was examined. Methods: The four roughages were co-cultured with Pleurotus ostreatus. The chemical composition; enzyme activities of laccase, carboxymethylcellulase (CMCase) and xylanase; carbohydrate and protein fractions (based on The Cornell Net Carbohydrate and Protein System [CNCPS]) were assessed at different days after inoculation (7, 14, 21, 28 d) and un-inoculated roughages (control, 0 d). The digestibility of nutrient components and the gas production of roughage with various incubation times were monitored at 0, 2, 4, 6, 9, 12, 24, 36, 48, 60, and 72 h using an in vitro ruminal fermentation method. Results: A higher CMCase activity (0.1039 U/mL) and earlier time to peak (14 d) were detected in Pleurotus ostreatus cultured with CS (p<0.05). Significantly, the incubation length-dependent responses of cumulative gas production were observed from 24 to 72 hours post fermentation (p<0.05), and these incubation length-dependent effects on cumulative gas production of PS and CS appeared earlier (24 h) for PS and CS than those (48 h) for BBS and RS (p<0.05). The fast-degradable carbohydrate (CA) content for all four roughages significantly increased over time (p<0.05). Nonetheless, increased degradation efficiency for CA treated with Pleurotus ostreatus was detected at both 21 and 28 days of incubation (p<0.05). With the exception of PS (p<0.05), there were no significant difference among the roughages (p>0.05) in slowly-degradable carbohydrate (CB2) at different incubation times (p<0.05). Conclusion: Assessment of the alterations in chemical composition, CNCPS system fractions, and the fermentation kinetics after biological pretreatment may yield a valuable database for evaluating the biological pretreatment of Pleurotus ostreatus in ruminant feed.

A Collaborative Study on Korean Standard JE Vaccine for Potency Assay

  • Kim, Jae-Ok;Shin, Jin-Ho;Baek, Sun-Young;Min, Kyung-Il;Min, Bok-Soon;Ryu, Seung-Rel;Kim, Byoung-Guk;Kim, Do-Keun;Ahn, Mi-Jin;Park, Mi-Kyung;Song, Hye-Won;Lee, Chung-Keel;Lee, Seok-Ho;Park, Sue-Nie
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.745-750
    • /
    • 2004
  • The objective of this collaborative study was to establish a Korean standard of Japanese encephalitis (JE) vaccine (mouse brain-derived, formalin-inactivated) for potency assay. A candidate preparation proposed as a Korean standard was provided by GreenCross Vaccine, and six laboratories, including one national control laboratory and five manufacturers of JE vaccine, participated in the study. The potency of the candidate preparation and a reference standard obtained from Japan was estimated by mouse immunogenicity assay using the in vitro plaque reduction neutralization test (PRNT). The results of 72 assays conducted by the 6 laboratories showed that the overall mean potency estimate of the candidate preparation was 2.455 log median plaque reduction neutralization antibody titer per 0.5-ml dosage administered twice in mice at 7-day intervals, and that the mean potency ratio of the candidate preparation relative to the reference standard was 1.074. The potency estimates were quite variable among laboratories irrespective of the preparation. The variability of assays assessed by Z scores and coefficient of variation (CV) were in general within the level of acceptance (Z scores within $\pm3$ and $CV\;\leq\;15%$). Therefore, we concluded that the candidate preparation would be suitable as a national standard for testing the potency of JE vaccine (inactivated).

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Expression of Translationally Controlled Tumor Protein (TCTP) Gene of Dirofilaria immitis Guided by Transcriptomic Screening

  • Fu, Yan;Lan, Jingchao;Wu, Xuhang;Yang, Deying;Zhang, Zhihe;Nie, Huaming;Hou, Rong;Zhang, Runhui;Zheng, Wanpeng;Xie, Yue;Yan, Ning;Yang, Zhi;Wang, Chengdong;Luo, Li;Liu, Li;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose.

Genetic Toxicity Test of o-Nitrotoluene by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Lee, Eun-Mi;Lee, So-Youn;Lee, Woo-Sun;Kang, Jin-Seok;Han, Eui-Sik;Go, Seo-Youn;Sheen, Yhun-Yong;Kim, Seung-Hee;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • o-Nitrotoluene is used to synthesize artificial dyes and raw materials of urethane resin. In this study, we have carried out in vitro genetic toxicity tests and microarray analysis to understand the underlying mechanisms and the mode of action of toxicity of onitrotoluene. TA1535 and TA98 cells were treated with o-nitrotoluene to test its toxicity by basic genetic toxicity test. Ames and two new in vitro micronucleus and COMET assays were applied using CHO cells and L5178Y cells, respectively. In addition, microarray analysis of differentially expressed genes in L5178Y cells in response to o-nitrotoluene was analyzed using Affymatrix genechip. The result of Ames test was that o-nitrotoluene treatment did not increase the mutations both in base substitution strain TA1535 and in frame shift TA98. o-Nitrotoluene has not increased micronuclei in CHO cells. But onitrotoluene increased DNA damage in L5178Y cell. Two-hundred two genes were initially selected as differentially expressed genes in response to o-nitrotoluene by microarray analysis and forty four genes among them were over 2 times of log fold changed. These forty four genes could be candidate biomarkers of genetic toxic action of o-nitrotoluene related to induction of mutation and/or induction of micronuclei and DNA damage. Further confirmation of these candidate markers related to the DNA damage will be useful to understand the detailed mechanism of action of o-nitrotoluene.

Gene Expression Profiling of Genotoxicity Induced by MNNG in TK6 Cell

  • Suh, Soo-Kyung;Kim, Tae-Gyun;Kim, Hyun-Ju;Koo, Ye-Mo;Lee, Woo-Sun;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. In this study, we investigated to examine gene expression profiles and genotoxic response in TK6 cells treated with DNA damaging agents MNNG (N-methyl-N'-nitrosoguanidine) and hydrogen peroxide $(H_2O_2)$. We extracted total RNA in three independent experiments and hybridized cRNA probes with oligo DNA chip (Applied Biosystems Human Genome Survey Microarray). We analyzed raw signal data with R program and AVADIS software and identified a number of deregulated genes with more than 1.5 log-scale fold change and statistical significancy. We indentified 14 genes including G protein alpha 12 showing deregulation by MNNG. The deregulated genes by MNNG represent the biological pathway regarding MAP kinase signaling pathway. Hydrogen peroxide altered 188 genes including sulfiredoxins. These results show that MNNG and $H_2O_2$ have both uniquely regulated genes that provide the potential to serve as biomarkers of exposure to DNA damaging agents.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

The Effects of Somatid on the Cytotoxicity of Cancer Cells and Human Papillomavirus Type 16 E6 and E7 Oncogenes (생기액(生肌液)의 세포독성 및 자궁경부암 바이러스 (HPV 16 type) 암 유발인자 E6와 E7의 작용에 미치는 효과)

  • Joung, Ok;Cho, Young-Sik;Cho, Cheong-Weon;Lee, Kyung-Ae;Shim, Jung-Hyun;Cho, Min-Chul;Lee, Hong-Soo;Yeom, Young-Il;Kim, Sang-Bom;Park, Sue-Nie;Yoon, Do-Young
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.340-346
    • /
    • 2000
  • Cervical cancer is one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papilloma viruses (HPV types 16 and 18) and cervical cancer has been well known. An extract of natural products, named as Somatid, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. This Somatid inhibited the proliferation of human cervical cancer cell lines (C-33A, SiHa, CaSki) and HaCaT keratinocytes in a dose response manner, In vitro binding assay and ELISA showed that Somatid inhibited the in vitro biding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, Somatid inhibited the in vitro binding of E7 and Rb which is essential tumor suppressor for the control of cell cycle. The levels of mRNA for E6 and E7 were also decreased by Somatid. Our data suggested that Somatid inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus can be used as a putative anti-HPV agent for the treatment of cervical carcinomas caused by HPV.

  • PDF

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF