• Title/Summary/Keyword: NH$_3$/$H_2O$

Search Result 898, Processing Time 0.035 seconds

evaluation of Performance Characteristic on Triple Effect Absorption Cycle (삼중효용 흡수사이클의 성능특성 평가)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.782-791
    • /
    • 1998
  • This paper presents a computer simulation of five types of triple effect absorption cycles employ-ing the refrigerant absorbent combinations of NH3/LiNO3 low-pressure type NH3/LiNO3+H2O/LiBr binary two-stage type series flow cycle and two types of parallel flow cycle for H2O/LiBr. The absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature approach temperature of absorber loss temperature of absorber and chilled water outlet temperature. The most important characteristic temperature of absorber and chilled water outlet temperature. The most important characteristic of NH3/LiNO3 low-pressure type and a NH3/LINO3+H2O/LiBr binary two-stage type is that it obtains a coefficient of performance higher than the sum of the performance coefficients of its part operating independently. As a result of this analysis the optimum designs and operating conditions were determined based on the operating conditions and the coefficient of performance.

  • PDF

Synthesis and Characterization of Tetranuclear Molybdenum(Ⅵ) Complexes with Butylamidoxime Derivatives (부틸아미드옥심 유도체의 몰리브덴(Ⅵ) 사핵 착물의 합성과 성질)

  • Roh, Soo-Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.552-558
    • /
    • 1995
  • The tetranuclear complexes, $X_2[M_{O4}O_12{R'C(NH_2)NO}_2](X= n-Bu_4N^+$, $R'=(CH_3)_2CH$, $CH_3CH_2CH_2$, $CH_3SCH_2$; $X=(CH_3)_2CHC(=NH_2)NH_2^+$, $R'=(CH_3)_2CH$; $X = CH_3CH_2CH_2C(=NH_2)NH_2^+$, $R'=CH_3_CH_2CH_2$; $X=CH_3SCH_2C(=NH_2)NH_2^+$, $R'=CH_3SCH_2)$ have been synthesized by the reactions of monomeric and polynuclear complexes with isobutyl-, butyl- and thiomethylacetamidoxime. The prepared complexes were identified by elemental analysis, infrared, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The structure of complex ${(CH_3)_2CHC(NH_2)_2}_2[M_{O4}O_{12}{(CH_3)_2CHC(NH_2)NO}_2]$ was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P2_{1/c}$, $a=10.168(3){\AA}$, $b=11.768(1){\AA}$, $c=13.557(1){\AA}$, ${\beta}=102.08(1)^{\circ}$, $V=1586.2(5){\AA}^3$, Z=2, final R=0.026 for 2951($F_0>3s(F_0)$). This complex is composed of a planar cyclic $[Mo_4({\mu}-O)_4]$ and two ${\mu}_4$-amidoximate.

  • PDF

Theoretical Study on Observed Heat of Ligation for Iron(Ⅱ) and Nickel(Ⅱ) Octahedral Complexes (팔면체형 Fe(Ⅱ)와 Ni(Ⅱ)착물의 실측 리간드화열에 관한 이론적 연구)

  • Kim, Jung Sung;Choi, Jin Tae;Song, Young Dae;Cho, Tae Sub
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • The correlation was investigated between the observed heat of ligation and calculated quantum chemical quantities for octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+} (M=Fe(II),\;Ni(II))$ complexes by EHMO(Extended Huckel Molecular Orbital) and ZINDO/1(Zerner's Intermediate Neglected of Differential Overlap)method. The net charge of $Fe^{2+}$ and $Ni^{2+}$ ion of octahedral $[M(H_2O)_{6-x}(NH_3)_x]^{2+}(M=Fe(II),\;Ni(II))$ complexes(x=O, 1, …, 6) decreased with substituting $NH_3$ for $H_2O$ molecules. It has found that a good correlation exists between the observed heat of ligation and the calculated quantum chemical quantities such as net charge of central atom, enthalpy of formation, and total dissociation energy. From this finding, we have obtained the following semiempirical linear equation ${\Delta}H_{obs}=-0.2858_{qFe}+0.8813(r=0.97),\;{\Delta}H_{obs}=-0.8981_{qNi}+1.7929(r=0.95),\;{\Delta}H_{obs}=-0.0031H_{f(Fe)}+0.5725(r=0.97),\;{\Delta}H_{obs}=-0.0095H_{f(Ni)}+0.9193(r=0.97),\;{\Delta}H_{obs}=0.0476E_{diss(Fe)}+0.6434(r=0.94),\;{\Delta}H_{obs}=0.1401E_{diss(Ni)}+1.1393(r=0.93)$.

  • PDF

Alkylation of Isobutane with 1-Butene over Heteropoly Acid Catalysts (헤테로폴리산 촉매상에서 1-부텐에 의한 i-부탄의 알킬화반응)

  • Hong, Sung Hee;Lee, Wha Young;Song, In Kyu
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1997
  • Liquid or gas phase alkylation of isobutane with 1-butene for i-octane production was carried out over Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$. Pretreatment temperature of the catalyst played an important role on the catalytic activity of heteropoly acids in the liquid phase alkylation. Cation-exchanged $H_3PW_{12}O_{40}$ showed a better total yield and i-octane selectivity than the mother acid in the liquid phase alkylation, and $(NH_4)_{2.5}H_{0.5}PW_{12}O_{40}$ was more efficient than $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ in terms of i-octane selectivity. It was found that the acidic property (deactivation of acid sites) of the catalyst was closely related to the catalytic activity of Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$ in the gas phase alkylation. $C_5-C_7$ were mainly formed in the early stage of gas phase alkylation due to the strong acidic property of the catalyst, whereas $C_8$ and $+C_9$ were mainly produced as the reaction proceeded due to the deactivation of acid sites. $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ showed the highest total yield in the gas phase alkylation among the catalysts examined.

  • PDF

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.

Synthesis and Properties of Molybdenum and Tungsten Oxo-Nitrosyl Complexes of Methylthioamidoxime (산소-니트로실 착물의 연구(제3보): 티오메틸아미드옥심의 몰리브덴과 텅스텐 산소-니트로실 착물의 합성과 특성)

  • Roh, Soo Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The pentanuclear complexes have been obtained by the reactions of molybdenum(VI) and tungsten(VI) polynuclear complexes with molybdenum(O) and tungsten(O) dinitrosyl mononuclear complexes, and methylthioamidoxime. The prepared complexes (n-Bu4N)2[Mo4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](1), (n-Bu4N)2[W4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](2), (n-Bu4N)2[Mo4O12W (NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] (3) have been characterized by elemental analysis, infrared, UV-visible and 1H NMR spectra. The complexes are elucidated the cis-{M(NO)2}2+(M = Mo, W) unit and a slight delocalization by spectroscopy. The structure of (n-Bu4N)2[W4O12Mo(NO) 2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P21}a$, a = 22.14(2) $\AA$, b = 14.93(1) $\AA$, c = 23.20(1) $\AA$, $\beta$ = 111.08(6) $\AA$, V = 7155(9) $\AA$, Z = 4, final R = 0.072 for 6191(I > $3\sigma(I)).$ The structure of complex forms two dinuclear [W2O5{CH3SCH2C(NH2)NHO}{CH3SCH2C(NH)NO}] and a central {Mo(NO)2} 2+ core. The geometric structure of the {Mo(NO)2} 2+unit is the formally cistype and C2v symmetry.

  • PDF

Effects of $\textrm{NO}_3$-N:$\textrm{NH}_4$-N Ratio and Elevated $\textrm{CO}_2$ on Growth and Quality of Lactuca sativa L. in Nutrient Film Technique (NFT재배에서 $\textrm{CO}_2$ 시용과 배양액의 $\textrm{NO}_3$:$\textrm{NH}_4$비율이 결구상추의 생육 및 품질에 미치는 영향)

  • 원선이;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.120-130
    • /
    • 1996
  • Crisphead lettuce(Lactuca sativa L.) was grown in NFT to investigate the effects of NO$_3$-N and NH$_4$-N ratio in nutrient solution and elevated $CO_2$ treatment in the crisphead lettuce growth. This experiment has been conducted under three different ratios of NO$_3$-N:NH$_4$-N(100:0, 75:25, 50:50) with two $CO_2$ concentration (control, 1500ppm ). The results are as follows; 1. In the case of not controlling pH and EC in nutrient solution, pH was gradually increased in NO$_3$-N:NH$_4$-N=100:0 treatment but rapidly decreased in the nutrient solution 2. Daily changes of NO$_3$-N and NH$_4$-N were observed without controlling the nutrient solution. In the treatments of NO$_3$-N:NH$_4$-N ratios were 75:25 and 50:50, NO$_3$-N absorption rates were 27.7% and 26.1%, while NH$_4$-N absorption rates were 87.9% and 71.2%, respectively. 3. There was little differences in total nitrogen of leaves. However phosphorus, potassium, calcium and magnesium contents were highly shown in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. 4. Higher $CO_2$ assimilation rate was shown in plants grown under $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. It dropped significantly with the increase of NH$_4$- N rates in nutrient solution. 5. Fresh weight, leaf number, root length and root weight of crisphead lettuce were far better in the treatment of $CO_2$ 1500ppm and 100:0 ratio of NO$_3$-N:NH$_4$-N. Growth differences by $CO_2$ elevation were not shown in other NO$_3$-N:NH$_4$-N treatments. 6. The highest nitrate contents of leaves were shown in NO$_3$-N single treatment but shown the lowest vitamin C contents. Nitrate contents of leaves were decreased by $CO_2$ but the effect was slight treatment.

  • PDF

Spectroscopic and Thermal Studies of [Cr2(NH2)2(H2O)2(SO4)2]·2H2O,[Cr(NCO)3(H2O)]·3H2O and [Fe O(OH)]·0.2H2O Compounds Formed by the Reactions of Urea with Cr2(SO4)3, Cr(CH3COO)3 AND Fe2(SO4)3

  • Sadeek, S.A.;Refat, M.S.;Teleb, S.M.
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.358-366
    • /
    • 2004
  • The bridged disulphato complex $[Cr_2(NH_2)_2(H_2O)_2(SO_4)_2]{\cdot}2H_2O$, terminal triisocyanato $[Cr(NCO)_3(H_2O)]{\cdot}3H_2O$ complex and limonite, $[FeO(OH)]{\cdot}0.2H_2O$ compound were prepared by the reaction of $Cr_2(SO_4)_3{\cdot}xH_2O, Cr(CH_3COO)_3$ and $Fe_2(SO_4)_3$, respectively, with urea in aqueous media at $80^{\circ}C$. The infrared spectra of the products indicate that the absence of the bands of urea, but shows the characteristic bands of coordinated amide, water, bridged sulphato and isocyanato groups. Thermogravimetric (TG) and differential thermal analysis (DTA) measurements on the complexes are also recorded. The data obtained agree quite well with the expected structures. A general mechanisms describing the formation and its thermal decomposition of the complexes are suggested.

The effect of moisture on SCR reaction of NMO (Natural Manganese Ore) (천연망간광석 SCR 반응에서 수분의 영향)

  • Kim, Sungsu;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.350-355
    • /
    • 2007
  • The effect of moisture in flue gas on SCR reaction of NMO (Natural Manganese Ore) was studied. The experiments were performed over NMO with NO, $NH_3$ at independent condition or simultaneous condition. $NH_3$ can be oxidized at low temperature by the lattice oxygen in NMO catalyst. The concentration of NO and $NO_2$ by $NH_3$ oxidation with moisture is higher above $300^{\circ}C$ than that without moisture. Moisture would competitively adsorb with NO and $NH_3$ on NMO catalyst. It caused poor NOx conversion to compete against $H_2O$. Besides the NOx conversion efficiency was reduced at below $250^{\circ}C$ because of the dipped $H_2O$ competitively adsorbed $NH_3$. The reactivity of NMO varied with the calcination temperature and the optimum calcination temperature was $400^{\circ}C$ regardless $H_2O$.