• Title/Summary/Keyword: NGV (Natural Gas Vehicle)

Search Result 12, Processing Time 0.024 seconds

A Conversion Rate Prediction Study of Exhaust Gas by Catalyst Simulation in Heavy Duty Natural Gas Vehicle (대형천연가스차량에서 촉매시뮬레이션에 의한 배출가스의 변환율 예측 연구)

  • 한영출;오용석;강호인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • An aftertreatment device which reduce exhaust gas of natural gas vehicle(NGV), NGV catalyst has important meaning as to reduce the exhaust emission. In this study, the characteristics of NGV catalyst were investigated and the effect parameters of NGV catalyst were analyzed and were predicted by changing the various parameters such as temperature, and gas concentration. The conversion efficiency of NGV catalyst converter was also predicted by Pd-loading, mass flow rate and gas composition.

  • PDF

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

A Study on Fuel Economy Determination of Natural Gas Vehicle Using Carbon Balance Method (탄소평형법을 적용한 천연가스 자동차의 연비 산출 방법 고찰)

  • Han, JeongOk;Chae, JungMin;Lee, DongWon
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • This study is aimed to investigate the US code and European code on the evaluation of fuel economy of natural gas vehicles and deduce the formula suitable for domestic natural gas fuel. The fuel consumption formula have been derived by carbon balance relation between fuel composition and exhaust emission. The US code does not limit the composition of the test gas, but European code should be used the reference gases such as G20 and G23. In the case of NGV using domestic city gas, it is confirmed that the fuel economy determined by European code is 12% worse than that of US code because of difference of test gas. Also, a method of determining the fuel properties from the calorific value is proposed to evaluate the fuel economy of natural gas vehicles.

Development of the computational program to evaluate heat leak on LNG tank of Natural Gas Vehicle

  • Minkasheva, Alena;Kim, Sung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.771-781
    • /
    • 2006
  • Car acceleration or deceleration induce the surface slope of liquid fuel in the LNG tank. Slope changes the surface area wetted by liquid fuel in the tank and consequently heat leak to the tank. The Fortran program, 'Pro-Heatleak', is developed to evaluate heat leak on LNG tank. The verification test proves the high accuracy of the developed program. The difference between MathCad and computational results is less than 0.07 %. Computational analyses of heat leak are carried out for 10 gallons and 20 gallons of fuel vapor in the tank. With the increasing of fuel vapor volume by 10 percent the wetted surface area and heat leak respectively decrease by 13 percent. The difference between maximum and minimum heat leak is about 10 percent for both 10 gallons and 20 gallons of fuel vapor in the tank.

Thermodynamic Analysis of High Pressure Multi-stage Reciprocating Compressors with Inter-coolers (중간 냉각기가 있는 고압 다단 왕복동식 압축기에 관한 열역학적 해석)

  • Lee, Euk-Soo;Kim, Myung-Hun;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1238-1247
    • /
    • 2003
  • Simplified thermodynamic analysis of high pressure 4-stage reciprocating compressors with 4 inter-coolers has been investigated to predict a behavior of a compressor system for NGV(natural gas vehicles). A computer program has been developed to predict and estimate the performance of high pressure 4-stage reciprocating compressor system. Thermodynamic properties of compressed natural gas(CNG) were calculated by ideal gas theory and compression cycle was assumed as reversible adiabatic compression and expansion processes, and isobaric intake and discharge processes. Comparison between results predicted by calculation model and measured by experimental tests is presented.

Analysis of Check Valve Seal for CNG Vehicle Fuel Supply Line (CNG차량의 연료공급라인용 Check Valve Seal의 거동해석)

  • Yoo, Jae-Chan;Yeo, Kyeong-Mo;Kang, Byeong-Roo;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 2006
  • In CNG (Compressed natural gas) fuel supply line, whose main components are receptacle and check valve are used to charge high pressure gas to the tank of NGV (Natural gas vehicle). It is reported that the seal is separated occasionally form valve seat and results in blockage of gas flow. In this paper, MARC is used to investigate the reasons of seal separation and suggest design improvements. The static gas pressure distributions acting on the seal which calculated using FLUENT are considered to investigate accurate seal deformation behaviors. Deformed seal shapes are obtained for various amounts of seal interference and its location, gas pressure distributions and Young's modulus of the rubber used. The results showed that the reasons of seal separation problems are verified theoretically, and suggested examples of new design method. Therefore the present numerical methods can be applied in designing and performance analysis of rubber seals adopted in high pressure fluid machineries.

Analysis of heat leak with the car acceleration for LNG tank of Natural Gas Vehicle (천연가스자동차용 LNG용기에서의 차량가속도와 Heat leak 관계 해석)

  • Minkasheva, Alena;Yu, Young-Min;Park, Yong-Kook;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.11-20
    • /
    • 2006
  • LNG is a valuable fuel since it offers some environmental, energy security and economic benefits over diesel. It could be used mainly in heavy-duty trucks and buses. Car acceleration induces the slope angle of the liquid fuel in the tank. Slope angle changes the surface area wetted by liquid fuel and consequently heat leak to the tank. This research is a result of numerical simulation of the heat leak with the car acceleration to LNG tank. The "Pro-HeatLeak" Fortran program is developed and the verification test of the developed program is done. The difference between numerical results and calculated results from MathCad verification test is less than 0.07 percent. The smallest heat leak is correspond to the case without oscillation. For the high car acceleration the value of heat leak is greater than that for the small acceleration. The difference between maximum and minimum heat leak for 10 gallons of fuel vapor in the tank is about 10 percent.

  • PDF

Improvement of $\lambda$--window Range of the Three-Way Catalyst for Natural Gas Vehicles (천연가스 자동차용 삼원촉매의 $\lambda$-윈도우 영역 개선)

  • 최병철;정필수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.92-100
    • /
    • 2000
  • The model gas reaction tests were carried out to investigate the purification characteristics of methane on the exclusive catalyst for NGV. The experiment was conducted with the factors which affect the conversion efficiency of methane, such as Redox ratio, coexistence components of CO, MO, $H_2$O, precious metals and additives. The catalyst loaded with larger amount of pd and with additive La showed lower light-off temperature. In the presence of CO and NO, the conversion efficiency of methane was varied according to the kind of additive loaded. The conversion efficiency of methane was dropped for the catalyst loaded with La under lean air-fuel ratio, while it increased for the one loaded with Ti+Zr for the same condition. It was shown that the water vapor inhibited methane from oxidation by its poisoning on the surface of catalyst.

  • PDF

Design of LNG fuel tank for a light duty truck and numerical analysis of heat leak to LNG tank

  • Alena, Minkasheva;Kim, Sung Joon
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.65-70
    • /
    • 2007
  • The LNG tank are properly designed to fit with the limited installation space of a light duty truck, Hyundai Porter II. This designed LNG tank has 36 liter capacity, so two LNG tanks installed on Porter II truck allow it to run about 432 km per fueling. It is almost two times greater than CNG mileage for same truck. To analyze the relationship between car acceleration and heat leak for different fuel vapor/liquid ratios, the modified Fortran program "Pro-Heatleak" is used. Computational analysis shows that the relationship between the heat leak and vapor/liquid ratio is linearly inversed. Heat leak increases with increasing of car acceleration when fuel vapor/liquid ratio is less than 0.5 and decreases when fuel vapor/liquid ratio is greater than 0.5. The difference between maximum and minimum heat leak for full tank is about 12 percents. For the fuel vapor/liquid ratio equal to 0.5 heat leak does not depend on car acceleration.

  • PDF