With the ongoing development of next-generation sequencing (NGS) platforms and advancements in the latest bioinformatics tools at an unprecedented pace, the ultimate goal of sequencing the human genome for less than $1,000 can be feasible in the near future. The rapid technological advances in NGS have brought about increasing demands for statistical methods and bioinformatics tools for the analysis and management of NGS data. Even in the early stages of the commercial availability of NGS platforms, a large number of applications or tools already existed for analyzing, interpreting, and visualizing NGS data. However, the availability of this plethora of NGS data presents a significant challenge for storage, analyses, and data management. Intrinsically, the analysis of NGS data includes the alignment of sequence reads to a reference, base-calling, and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection, and genome browsing. While the NGS technologies have allowed a massive increase in available raw sequence data, a number of new informatics challenges and difficulties must be addressed to improve the current state and fulfill the promise of genome research. This review aims to provide an overview of major NGS technologies and bioinformatics tools for NGS data analyses.
Next-generation sequencing (NGS) is a high-throughput technique for sequencing large numbers of DNA fragments that are prepared from a genome. This sequencing technique has been used to elucidate whole genome sequences of living organisms and to analyze complementary DNA (cDNA) or chromatin immunoprecipitated DNA (ChIPed DNA) at the genome level. After NGS, the use of proper tools is important for processing and analyzing data with reasonable parameters. However, handling large-scale sequencing data and programing for data analysis can be difficult. The Galaxy platform, a public web service system, provides many different tools for NGS data analysis, and it allows researchers to analyze their data on a web browser with no deep knowledge about bioinformatics and/or programing. In this study, we explain the procedure for preparing chromatin immunoprecipitation-sequencing (ChIP-seq) libraries and steps for analyzing ChIP-seq data using the Galaxy platform. The data analysis steps include the NGS data upload to Galaxy, quality check of the NGS data, premapping processes, read mapping, the post-mapping process, peak-calling and visualization by window view, heatmaps, average profile, and correlation analysis. Analysis of our histone H3K4me1 ChIP-seq data in K562 cells shows that it correlates with public data. Thus, NGS data analysis using the Galaxy platform can provide an easy approach to bioinformatics.
KIPS Transactions on Software and Data Engineering
/
v.2
no.2
/
pp.107-112
/
2013
With the progress of NGS technologies, large genome data have been exploded recently. To analyze such data effectively, the assistance of HPC technique is necessary. In this paper, we organized a genome analysis pipeline to call SNP from NGS data. To organize the pipeline efficiently under HPC environment, we analyzed the CPU utilization pattern of each pipeline steps. We found that sequence alignment is computing centric and suitable for parallelization. We also analyzed the performance of parallel open source alignment tools and found that alignment method utilizing many-core processor can improve the performance of genome analysis pipeline.
Song, Hae Jung;Lee, JunMo;Graf, Louis;Rho, Mina;Qiu, Huan;Bhattacharya, Debashish;Yoon, Hwan Su
ALGAE
/
v.31
no.2
/
pp.137-154
/
2016
Next generation sequencing (NGS) technologies have revolutionized many areas of biological research due to the sharp reduction in costs that has led to the generation of massive amounts of sequence information. Analysis of large genome data sets is however still a challenging task because it often requires significant computer resources and knowledge of bioinformatics. Here, we provide a guide for an uninitiated who wish to analyze high-throughput NGS data. We focus specifically on the analysis of organelle genome and metagenome data and describe the current bioinformatic pipelines suited for this purpose.
With the rapid growth of genomic data, new requirements have emerged that are difficult to handle with big data storage and analysis techniques. Regardless of the size of an organization performing genomic data analysis, it is becoming increasingly difficult for an institution to build a computing environment for storing and analyzing genomic data. Recently, cloud computing has emerged as a computing environment that meets these new requirements. In this paper, we analyze and compare existing distributed and parallel NGS (Next Generation Sequencing) analysis based on cloud computing environment for future research.
High-throughput next-generation sequencing (NGS) technology produces a tremendous amount of raw sequence data. The challenges for researchers are to process the raw data, to map the sequences to genome, to discover variants that are different from the reference genome, and to prioritize/rank the variants for the question of interest. The recent development of many computational algorithms and programs has vastly improved the ability to translate sequence data into valuable information for disease gene identification. However, the NGS data analysis is complex and could be overwhelming for researchers who are not familiar with the process. Here, we outline the analysis pipeline and describe some of the most commonly used principles and tools for analyzing NGS data for disease gene identification.
Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
Genomics & Informatics
/
v.18
no.1
/
pp.5.1-5.5
/
2020
Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.
Seo, Dong Hee;Lee, Jeong Min;Park, Mi Ok;Lee, Hyun Ju;Moon, Seo Yoon;Oh, Mijin;Kim, So Young;Lee, Sang-Heon;Hyeong, Ki-Eun;Hu, Hae-Jin;Cho, Dae-Yeon
The Korean Journal of Blood Transfusion
/
v.29
no.3
/
pp.310-319
/
2018
Background: Research on next-generation sequencing (NGS)-based HLA typing is active. To resolve the phase ambiguity and long turn-around-time of conventional high resolution HLA typing, this study developed a NGS-based high resolution HLA typing method that can handle large-scale samples within an efficient testing time. Methods: For HLA NGS, the condition of nucleic acid extraction, library construction, PCR mechanism, and HLA typing with bioinformatics were developed. To confirm the accuracy of the NGS-based HLA typing method, the results of 192 samples HLA typed by SSOP and 28 samples typed by SBT compared to NGS-based HLA-A, -B and -DR typing. Results: DNA library construction through two-step PCR, NGS sequencing with MiSeq (Illumina Inc., San Diego, USA), and the data analysis platform were established. NGS-based HLA typing results were compatible with known HLA types from 220 blood samples. Conclusion: The NSG-based HLA typing method could handle large volume samples with high-throughput. Therefore, it would be useful for HLA typing of bone marrow donation volunteers.
In countries with FMD vaccination, as in Korea, typical clinical signs do not appear, and even in FMD positive cases, it is difficult to isolate the FMDV or obtain whole genome sequence. To overcome this problem, more rapid and simple NGS system is required to control FMD in Korea. FMDV (O/Boeun/ SKR/2017) RNA was extracted and sequenced using Ion Torrent's bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. The whole genome sequencing of raw data generated data of 1,839,864 (mean read length 283 bp) reads comprising a total of 521,641,058 (≥Q20 475,327,721). Compared with FMDV (GenBank accession No. MG983730), the FMDV sequences in this study showed 99.83% nucleotide identity. Further study is needed to identify these differences. In this study, fast and robust methods for benchtop next generation sequencing (NGS) system was developed for analysis of Foot-and-mouth disease virus (FMDV) whole genome sequences.
Next-generation sequencing (NGS) is widely used to identify the causative mutations underlying diverse human diseases, including cancers, which can be useful for discovering the diagnostic and therapeutic targets. Currently, a number of single-nucleotide variant (SNV)-calling algorithms are available; however, there is no tool for visualizing the recurrent and phenotype-specific mutations for general researchers. In this study, in order to support defining the recurrent mutations or phenotype-specific mutations from NGS data of a group of cancers with diverse phenotypes, we aimed to develop a user-friendly tool, named mutation arranger for defining phenotype-related SNV (MAP). MAP is a user-friendly program with multiple functions that supports the determination of recurrent or phenotype-specific mutations and provides graphic illustration images to the users. Its operation environment, the Microsoft Windows environment, enables more researchers who cannot operate Linux to define clinically meaningful mutations with NGS data from cancer cohorts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.