• Title/Summary/Keyword: NGS 기술

Search Result 64, Processing Time 0.021 seconds

A application testing on HCC single virtualization service platform (HCC 단일 가상화 서비스 플랫폼에서 애플리케이션 시험)

  • Woo, Joon;Li, Guohua
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.32-35
    • /
    • 2021
  • 단일 가상화 서비스 플랫폼은 메모리 및 컴퓨팅 집약적 워크로드를 수행하기 위한 고성능 시스템 환경의 신속한 구축을 지원하는 클라우드 기반의 소프트웨어 정의 서버를 위한 핵심 기술이다. 본 연구는 다수의 물리 노드를 통합하여 하나의 고성능 단일가상서버로 구성하기 위해 개발된 HCC 단일 가상화 서비스 플랫폼에서 대용량 데이터 처리 및 대규모 연산이 필요한 NGS 기반 농생명유전체 조립 프로그램과 이상 기상의 탐지 분석을 위한 GOES 위성자료 전처리 프로그램을 시험하여 활용 적합성을 검증하였다.

Design and Performance Evaluation of a New SR-ARQ with an Adaptive Timer and Delayed NAK for Improving Handover Performance in Next-Generation Mobile Communication Networks (차세대 이동 통신망에서 핸드오버 성능 향상을 위한 적응형 타이머와 지연 NAK을 이용한 SR-ARQ 설계 및 성능 평가)

  • Park, Man-Kyu;Choi, Yun-Chul;Lee, Jae-Yong;Kim, Byung-Chul;Kim, Dae-Young;Kim, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.48-59
    • /
    • 2009
  • Next generation mobile communication system will have various access networks and provide seamless multimedia data service to mobile nodes. The WiNGS system, one of these access network, has superior RAT(Radio Access Technology) and network connectivity other than previous ones. In this paper, we propose link-layer SR-ARQ between mobile node and WAGW to solve packet re-ordering problem during handover. In the proposed scheme, we apply the adaptive timer at the SR-ARQ sender to reduce unnecessary packet retransmission during handoff and delayed NAK algorithm at the SR-ARQ receiver for delaying NAK response due to temporary out-of-sequenced frames. We evaluate the performance of the proposed scheme by implementing the new SR-ARQ protocol at the link-layer using ns-2 simulator, and show the handover performance is improved greatly by preventing unnecessary retransmission.

CNVDAT: A Copy Number Variation Detection and Analysis Tool for Next-generation Sequencing Data (CNVDAT : 차세대 시퀀싱 데이터를 위한 유전체 단위 반복 변이 검출 및 분석 도구)

  • Kang, Inho;Kong, Jinhwa;Shin, JaeMoon;Lee, UnJoo;Yoon, Jeehee
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.249-255
    • /
    • 2014
  • Copy number variations(CNVs) are a recently recognized class of human structural variations and are associated with a variety of human diseases, including cancer. To find important cancer genes, researchers identify novel CNVs in patients with a particular cancer and analyze large amounts of genomic and clinical data. We present a tool called CNVDAT which is able to detect CNVs from NGS data and systematically analyze the genomic and clinical data associated with variations. CNVDAT consists of two modules, CNV Detection Engine and Sequence Analyser. CNV Detection Engine extracts CNVs by using the multi-resolution system of scale-space filtering, enabling the detection of the types and the exact locations of CNVs of all sizes even when the coverage level of read data is low. Sequence Analyser is a user-friendly program to view and compare variation regions between tumor and matched normal samples. It also provides a complete analysis function of refGene and OMIM data and makes it possible to discover CNV-gene-phenotype relationships. CNVDAT source code is freely available from http://dblab.hallym.ac.kr/CNVDAT/.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Toward The Fecal Microbiome Project (분변 미생물군집 프로젝트)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.415-418
    • /
    • 2013
  • Since the development of the next generation sequencing (NGS) technology, 16S rRNA gene sequencing has become a major tool for microbial community analysis. Recently, human microbiome project (HMP) has been completed to identify microbes associated with human health and diseases. HMP achieved characterization of several diseases caused by bacteria, especially the ones in human gut. While human intestinal bacteria have been well characterized, little have been studied about other animal intestinal bacteria. In this study, we surveyed diversity of livestock animal fecal microbiota and discuss importance of studying fecal microbiota. Here, we report the initiation of the fecal microbiome project in South Korea.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.

회원사 소개 - 중소중견기업편 - 시크제네시스(SeqGenesis)

  • 한국식품연구원
    • Bulletin of Food Technology
    • /
    • v.26 no.4
    • /
    • pp.344-348
    • /
    • 2013
  • 시크제네시스(SeqGenesis)는 2011년 7월 설립된 대전소재 생물정보분석 전문기업으로, 국가 연구기관에서 다수 미생물, 인간, 동물, 식물에 대한 오믹스 통합 데이터베이스 및 생물정보 분석 플랫폼 개발, 영양유전체 연구지원 시스템 구축, 분석알고리즘 개발 등 다양한 생물정보분석에 대한 경력을 가진 전문연구원으로 구성되어 있다. 현재 차세대시퀀싱(NGS)데이터 분석, 마이크로바이옴(microbiome) 분석, 고밀도 마이크로어레이 프로브 디자인 및 분석, 생물 정보 컨설팅, 오믹스 데이터베이스 구축 등 연구 지원 파트너로서 생물정보분석 서비스를 하고 있다.

  • PDF

Researches of pear tree (Pyrus spp.) genomics (배나무(Pyrus spp.) 유전체 연구 현황)

  • Oh, Youngjae;Shin, Hyunsuk;Kim, Keumsun;Han, Hyeondae;Kim, Yoon-Kyeong;Kim, Daeil
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.290-297
    • /
    • 2015
  • Based on the place of its origin, pear tree (Pyrus spp.) is largely divided into European pears (P. communis, cultivated mainly in Europe and the U.S.) and Asian pears (P. pyrifolia, P. bretschneideri, and P. ussuriensis, distributed and grown in East Asian countries including China, Japan, and Korea). Most pear trees have 17 chromosomes (diploidy, 2n=2x=34). Their genetic studies and precise cultivar breeding are highly restricted by conditions such as self-incompatibility controlled by S-locus and juvenility as one major character of fruit crops. Genetic studies on Pyrus have been promoted by the development of various molecular markers. These markers are being utilized actively in various genetic studies, including genetic relationship analysis, genetic mapping, and QTL analysis. In addition, research on pear genetic linkage maps has been extended to studies for the identification of QTL for target traits such as disease resistance and genetic loci of useful traits. NGS technology has radically reduced sequencing expenses based on massive parallel reactions to enable high-capacity and high-efficiency. NGS based genome analyses have been completed for Chinese pear 'Danshansuli' and European pear 'Bartlett'. In Korea, GWAS for agricultural valuable traits such as floral structure, ripening, and total soluble contents have been conducted through resequencing. GBS has been performed for 'Whangkeumbae', 'Cheongsilri', and 'Minibae'.

Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee (꿀벌 Apis mellifera에서 유래 한 특성화 되지 않은 항균성 펩티드의 동정)

  • Park, Hee Geun;Kim, Dong Won;Lee, Man-Young;Choi, Yong Soo
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2020
  • The European honeybee (Apis mellifera L.) has multiple anti-microbial peptides, but many were unknown and demands for their characterization have increased. This study therefore focused on identifying novel anti-microbial peptides (AMPs) from A. mellifera L. To obtain high-throughput transcriptome data of the honeybee, we implemented next-generation sequencing (NGS), isolating novel AMPs from total RNA, and generated 15,314 peptide sequences, including 44 known, using Illumina HiSeq 2500 technology. The uncharacterized peptides were identified based on specific features of possible AMPs predicted in the sequencing analysis. AMP5, one such uncharacterized peptide, was expressed in the epidermis, body fat, and venom gland of the honeybee. We chemically synthesized this peptide and tested its anti-bacterial activity against Gram-negative Escherichia coli (KACC 10005) and Gram-positive Bacillus thuringiensis (KACC 10168) by anti-microbial assay. AMP5 exhibited anti-bacterial activity against E. coli (MIC50=22.04±0.66 μM) but not against B. thuringiensis. When worker bees were injected with E. coli, AMP5 was up-regulated in the body fat. This study therefore identified AMP5 in adult European honeybees and confirmed its anti-bacterial activity against Gram-negative E. coli.