• Title/Summary/Keyword: NGF regulation

Search Result 23, Processing Time 0.018 seconds

Effect of resistance training at different intensities on hippocampal neurotrophic factors and peripheral CCL11 levels in obese mice

  • Woo, Jinhee;Roh, Hee-Tae;Park, Chan-Ho;Yoon, Byung-Kon;Kim, Do-Yeon;Shin, Ki-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.876-884
    • /
    • 2019
  • We investigated the effect of moderate- and high-intensity resistance training on hippocampal neurotrophic factors and peripheral CCL11 levels in high-fat diet (HFD)-induced obese mice. C57/black male mice received a 4 weeks diet of normal (control, CON; n = 9) or a high-fat diet (HF; n = 27) to induce obesity. Thereafter, the HF group was subdivided equally into the HF, HF + moderate-intensity exercise (HFME), and HF + high-intensity exercise (HFHE) groups (n = 9, respectively), and mice were subjected to ladder-climbing exercise for 8 weeks. The hippocampal brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels were significantly lower in the HF group than in the CON group (p < 0.05). In addition, in the HFME and HFHE groups were significantly higher than in the HF group (p < 0.05). The peripheral CCL11 levels were significantly higher in the HF group than in the CON group (p < 0.05). In addition, in the HFME and HFHE groups were significantly lower than in the HF group (p < 0.05). However, there was no significant difference according to the exercise intensity among the groups. Collectively, these results suggest that obesity can induce down-regulation of neurotrophic factors and inhibition of neurogenesis. In contrast, regardless of exercise intensity, resistance training may have a positive effect on improving brain function by inducing increased expression of neurotrophic factors.

Gene Expression Profile of Rat Hypothalamus Treated with Electroacupuncture at ST36 Acupoint (족삼리 전침자극에 의한 흰쥐 hypothalamus의 유전자 발현 profile 분석)

  • Rho Sam Woong;Lee Gi Seog;Choi Gi Soon;Na Young In;Hong Moo Chang;Shin Min Kyu;Min Byung il;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1041-1054
    • /
    • 2004
  • Electroacupuncture (EA) has been reported to increase pain threshold, and to enhance the NK cell activity by up-regulation of IFN-γ and endogenous β-endolphin. For the purpose of understanding the molecular mechanism of EA stimulation, we analyzed the gene expression profile of rat hypothalamus, treated on Zusanli (ST36) with EA, in comparison with control group by oligonucleotide chip microarray (Affymetrix GeneChip Rat Neurobiology U34 Array) and real-time RT-PCR. Sprague-Dawley (S-D) male rats were stimulated at the Zusanli (ST36) acupoint in restriction holder. Simultaneously the control group was given only holder stress without EA stimulation. In order to prove the appropriateness of EA treatment, we measured spleen NK cell activity with standard 51Cr release assay. NK cell activity of EA group was significantly increased comparing to control group. The microarray and PCR results show that EA treatment up-regulates expression of genes associated with 1) nerve growth such as NGF induced factor A and VGF, 2) signal transduction such as 5HT3 receptor subunit, AMPA receptor binding protein and Na-dependent neurotransmitter transporter, and 3) anti-oxidation such as superoxide dismutase and glutathione S-transferase. In addition, the activity of the anti-oxidative enzyme, SOD of hypothalamus, liver and RBC was enhanced compared to that of control. The list of differentially expressed genes may implicate further insight on the mechanism of acupuncture effects.

Expression of Neurotrophic Factors and Their Receptors in Rat Posterior Taste Bud Cells

  • Park, Dong-Il;Chung, Ki-Myung;Cho, Young-Kyung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Taste is an important sense in survival and growth of animals. The growth and maintenance of taste buds, the receptor organs of taste sense, are under the regulation of various neurotrophic factors. But the distribution aspect of neurotrophic factors and their receptors in distinct taste cell types are not clearly known. The present research was designed to characterize mRNA expression pattern of neurotrophic factors and their receptors in distinct type of taste cells. In male 45-60 day-old Sprague-Dawley rats, epithelial tissues with and without circumvallate and folliate papillaes were dissected and homogenized, and mRNA expressions for neurotrophic factors and their receptors were determined by RT-PCR. The mRNA expressions of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), receptor tyrosine kinase B (TrkB), exclusion of nerve growth factor (NGF), neurotrophin-4/5 (NT4/5), receptor tyrosine kinase A (TrkA), receptor tyrosine kinase C (TrkC), and p75NGFR were observed in some population of taste cell. In support of this result and to characterize which types of taste cells express NT3, BDNF, or TrkB, we examined mRNA expressions of NT3, BDNF, or TrkB in the $PLC{\beta}2$ (a marker of Type II cell)-and/or SNAP25 (a marker of Type III cell)-positive taste cells by a single taste cell RT-PCR and found that the ratio of positively stained cell numbers were 17.4, 6.5, 84.1, 70.3, and 1.4 % for $PLC{\beta}2$, SNAP25, NT3, BDNF, and TrkB, respectively. In addition, all of $PLC{\beta}2$-and SNAP25-positive taste cells expressed NT3 mRNA, except for one taste bud cell. The ratios of NT3 mRNA expressions were 100% and 91.7% in the SNAP25-and $PLC{\beta}2$-positive taste cells, respectively. However, two TrkB-positive taste cells co-expressed neither $PLC{\beta}2$ nor SNAP 25. The results suggest that the most of type II or type III cells express BDNF and NT3 mRNA, but the expression is shown to be less in type I taste cells.