• Title/Summary/Keyword: NGC 6881

Search Result 5, Processing Time 0.017 seconds

Kinematics and Geometrical Structure of the Planetary Nebula NGC 6881 (행성상 성운 NGC 6881의 운동학적 특성과 기하학적 구조)

  • Lee, Sang-Min;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.847-856
    • /
    • 2007
  • The Planetary nebula NGC 6881 displays quadrupole morphology and it also has a jet feature in its image. We investigated the line profiles of the optical region spectral emission lines, using the Hamilton Echelle Spectrograph (HES) at the Lick observatory. The HES data obtained in this study was the radiation coming from the inner region within the diameter of 4 second of arc. Expansion velocity was obtained, based on the strong emission line profiles of e.g. H, Hel, Hell, [OIII], [NII], [ArIII], [SII], and [SIII}, using the IRAF and StarLink/Dipso reduction packages. The HI recombination lines showed one single peak profile, while the He and forbidden strong lines displayed double peaks. The results of this study show that the outflow velocity of gas increases radially outwards due to the central stellar radiation pressure. It was concluded that three central rings appeared in the HST image are the result of a combined structure of bipolar cones (seen in e.g. HI lines) and a ring (seen in He, [SIII] lines) in projection.

Discovery of Raman-scattered He II Features at 6545 Å in Planetary Nebulae NGC 6886 & NGC 6881 from BOES Spectroscopy

  • Choi, Bo-Eun;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.50.4-51
    • /
    • 2020
  • We report our discovery of Raman-scattered He II λ6545 feature in young planetary nebulae NGC 6886 and NGC 6881 which indicates the existence of atomic hydrogen components. Considering sharply increasing cross-section of hydrogen atom near the resonance, Raman-scattered He II features are a useful diagnostic tool to investigate the distribution and kinematics of H I region in planetary nebulae. The high-resolution spectroscopic observation was carried out using BOES installed on the 1.8 m telescope of BOAO. We estimate the column density of H I region and its expansion velocity using our grid-based Monte-Carlo radiative transfer code. We assume that the H I region is uniformly distributed in spherical shell geometry with an opening angle and expands with constant speed. Our best-fit model is shown with the column density NHI = 3 × 1020 cm-2 and expansion speed vexp = 25 km s-1 with the opening angle ~ 25° for NGC 6886, and NHI = 4 × 1020 cm-2 and vexp = 30 km s-1 with the opening angle ~ 35° for NGC 6881. We present brief discussions on the late-stage of evolution of stars with mass > 3 M⊙.

  • PDF