• Title/Summary/Keyword: NF2

Search Result 2,138, Processing Time 0.024 seconds

Inhibitory Effects of Propenone Derivatives on $NF-{\kappa}B$ activity and IL-8-Induced Monocyte Adhesion to Colon Epithelial Cells (Propenone 유도체의 $NF-{\kappa}B$ 활성 억제 및 IL-8 유도에 의한 단핵구의 장 상피세포 부착 억제 효과)

  • Park, Su-Young;Kim, Kyoung-Jin;Lee, Jong-Suk;Lee, Eung-Seok;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • In this study, we examined the inhibitory effects of propenone derivatives, 1,3-diphenyl-propenone (DPhP), 3-phenyl-1-thiophen-2-yl-propenone (PhT2P), 3-phenyl-1-thiophen-3-yl-propenone (PhT3P) and 1-furan-2-yl-3-phenyl-propenone (FPhP), on $TNF-{\alpha}$-induced nuclear factor (NF)-${\kappa}B$ activity and interleukin (IL)-8-induced monocyte adhesion to colon epithelial cells. 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) that is previously reported as a $NF-{\kappa}B$ inhibitor suppressed $TNF-{\alpha}$-induced monocyte-epithelial cell adhesion in a concentration-dependent manner. The propenone derivatives, DPhP, PhT2P, PhT3P, FPhP, also inhibited $TNF-{\alpha}$-induced $NF-{\kappa}B$ activation in a similar degree to FPP-3. In a DPPH radical scavenging assay, none of the compounds showed DPPH radical scavenging activity, indicating that the inhibitory actions of the propenone derivatives on redox-sensitive $NF-{\kappa}B$ activity is not due to a simple free radical scavenging activity. In addition, the propenone derivatives also suppressed the IL-8-induced monocyte adhesion to colon epithelial cells. Furthermore, the effective concentrations of the propenone derivatives on both $NF-{\kappa}B$ activation as well as IL-8 induced monocyte-epithelial cell adhesion were 1000 times lower than 5-aminosalicylic acid (5-ASA), a clinically used drug for inflammatory bowel disease. These results suggest that the propenone derivatives may be a potential lead having a strong inhibitory activity against inflammatory cytokine-induced epithelial inflammation.

Effects of Membrane-filtered Powder of Sunmul on the Quality Characteristics of Noodles (막분리한 순물의 농축분말 첨가가 국수의 품질에 미치는 영향)

  • Chung, Hai-Jung;Choi, Min-Hee;Kim, Woo-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • This study was conducted to investigate the quality characteristics of noodles prepared with the addition of nanofiltered (NF) powder of sunmul. Noodles were prepared with different levels $(0\%,\;1.5\%,\;3\%\;and\;5\%,\;w/w)$ of NF powder and physico-chemical properties were examined. Results of rapid visco analyzer showed that peak, trough, final viscosity and set back decreased as the NF powder level increased. The weight and volume of cooked noodles increased with the addition of NF powder. Turbidity of soup also increased as the amount of NF powder increased, indicating higher cooking loss. The color of wet and cooked noodles became greenish yellow as the NF powder level increased. Hardness, springiness, gumminess and brittleness of cooked noodles decreased with the increasing amount of NF powder. Results of sensory evaluation showed that noodles prepared with up to $3\%$ addition of NF powder was considered to be as acceptable as noodles prepared without NF powder.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB (Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과)

  • Kim, Mi Jeong;Kim, Ka Hye;Kim, Moon Jeong;Kim, Jin Ik;Choi, Hye Jung;Moon, Ja Young;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB acts as a critical transcription factor for the survival of cells via the induction of antiapoptotic genes. Constitutive activation of NF-κB in many types of solid tumors suggests that the inhibition of NF-κB might prevent or inhibit tumorigenesis. Although a number of studies demonstrated that Hsp70 regulated NF-κB activity, the exact mechanism is not clear. This study investigated the functional relationship of Hsp70 and IKKγ in the regulation of NF-κB activation using expression plasmids of components of the IKK complex. Wild-type and deletion mutants of IKKγ were expressed together with Hsp70, and the combined regulatory effect of Hsp70 and IKKγ on NF-κB activation was assayed. Hsp70 suppressed the activation of NF-κB in a reporter plasmid assay. Hsp70 also suppressed the phosphorylation and degradation of IκBα. The suppressive effect of Hsp70 on NF-κB activation was synergistically elevated by IKKγ. The N-terminal IKKβ binding site, C-terminal leucine zipper, and zinc finger domains of IKKγ were not necessary for the suppressive effect. Furthermore, Hsp70 and IKKγ synergistically suppressed the induction of COX-2 expression by lipopolysaccharides in RAW264.7 cells. These results suggest that overexpression of Hsp70 and IKKγ may be a strategic method for inhibition of NF-κB and related diseases.

Anti-inflammatory Effect of Nypa fruticans Wurmb. on tumor necrosis factor (TNF)-α-induced Inflammatory response in HaCaT cells (TNF-α로 유도된 HaCaT 각질형성세포의 염증반응에서 해죽순의 항염증 효과)

  • Bae, Gi-Sang;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.34 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • Objectives : Nypa fruticans Wurmb. (NF) have been used as a traditional medicine to treat inflammatory diseases in East-South Asia. However, it is largely undiscovered whether NF water extract could exhibit anti-inflammatory activities against tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory responses on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the anti-inflammatory activity of NF water extract on TNF-${\alpha}$-induced inflammatory responses in HaCaT cells. Methods : To investigate the anti-inflammatory activites of NF water extract in HaCaT cells, the inflammatory model of HaCaT cells was established under a suitable concentration (10 ng/ml) of human TNF-${\alpha}$ (hTNF-${\alpha}$). HaCaT keratinocyte cells were pre-treated with NF water extract for 1 h, and then stimulated with hTNF-${\alpha}$. Then, the cells were harvested to measure the inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$), and pro-inflammatory cytokine including TNF-${\alpha}$ and interleukin (IL)-6. In addition, we examined the inhibitory mechanisms of NF, mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha ($I{\kappa}-B{\alpha}$) Results : The treatment of NF inhibited the hTNF-${\alpha}$-induced elevation of iNOS, COX-2, and $PGE_2$ in HaCaT cells. In addition, NF treatment inhibited the hTNF-${\alpha}$-induced elevation of TNF-${\alpha}$ and IL-6. Furthermore, NF treatment inhibited the activation of MAPKs but not degradation of $I{\kappa}-B{\alpha}$. Conclusions : Taken together, our result suggest that treatment of NF could inhibit the hTNF-${\alpha}$-induced inflammatory responses via deactivation of MAPKs in HaCaT cells. This study could suggest that NF could be a beneficial agent to prevent skin damage or inflammation.

Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells

  • Zhang, Guo-Jun;Zhang, Zhe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2387-2391
    • /
    • 2013
  • Resistance to apoptosis is a major obstacle preventing effective therapy for malignancies. Bcl-2 plays a significant role in inhibiting apoptosis. We reconstructed a stable human Bcl-2 transfected cell line, BIU87-Bcl-2, that was derived from the transfection of human bladder carcinoma cell line BIU87 with a plasmid vector containing recombinant Bcl-2 [pcDNA3.1(+)-Bcl-2]. A cell line transfected with the plasmid alone [pcDNA3.1(+)-neo] was also established as a control. BIU87 and BIU87-neo proved sensitive to adriamycin induced apoptosis, while BIU87-Bcl-2 was more resistant. In view of the growing evidence that NF-${\kappa}B$ may play an important role in regulating apoptosis, we determined whether Bcl-2 could modulate the activity of NF-${\kappa}B$ in bladder carcinoma cells. Stimulation of BIU87, BIU87-neo and BIU87-Bcl-2 with ADR resulted in an increase expression of NF-${\kappa}B$ (p<0.001). The expression of NF-${\kappa}B$ in BIU87-Bcl-2 was higher than in the other two cases, with a concomitant reduction in the $I{\kappa}B{\kappa}$ protein level. These results suggest that the overexpression of Bcl-2 renders human bladder carcinoma cells resistant to adriamycin-induced cytotoxicity and there is a link between Bcl-2 and the NF-${\kappa}B$ signaling pathway in the suppression of apoptosis.

Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells

  • Hwang, Yu-Jin;Song, Jaewhan;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.524-529
    • /
    • 2014
  • Oxidative stress and inflammation are common to many pathological conditions. Defense mechanisms protect cells from oxidative stress, but can become over-activated following injury and inflammation. NF-${\kappa}B$ and Nrf2 transcription factors regulate proinflammatory and antioxidant gene expression, respectively. Studies have shown that many natural dietary compounds regulate NF-${\kappa}B$ and Nrf2, preventing inflammation and oxidative stress. Here, we report major compounds of Prunella vulgaris var. lilacina such as rosmarinic acid, oleanolic acid, ursolic acid and caffeic acid as a potential therapeutic for oxidative stress and inflammation. The major compounds exhibited high anti-inflammatory activity, inhibiting NO, PGE2 production, NF-${\kappa}B$ expression and activating Nrf2 expression. In addition, we examined the effect of major compounds on MafK expression. Among the compounds, oleanolic acid significantly decreased MafK expression and MafK-mediated p65 acetylation. These findings suggest that oleanolic acid as NF-${\kappa}B$ inhibitors can potentially be used in therapeutic applications for the treatment of oxidative stress-induced diseases.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2005
  • PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.