• Title/Summary/Keyword: NF1

Search Result 2,158, Processing Time 0.031 seconds

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Melittin Inhibits DU -145 Human Refractory Prostate Cancer Cell Growth Through Induction of Apoptosis Via Inactivation of NF-${\kappa}$B (Melittin이 NF-${\kappa}$B의 불활성화를 통한 DU-145 전립선 암세포의 성장 및 세포자멸사 유도에 미치는 영향)

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.26 no.3
    • /
    • pp.39-48
    • /
    • 2009
  • 목적 : 이 연구는 봉약침의 주요성분인 멜리틴이 NF-${\kappa}$B의 활성억제를 통하여 세포자멸사를 유도하고, 전립선 암세포주인 DU-145 세포의 성장을 억제하는지를 확인하고 멜리틴의 NF-${\kappa}$B 활성억제기전을 살펴보고자 하였다. 방법 : 멜리틴을 처리한 후 DU-145의 성장억제를 관찰하기 위해 WST-1 assay를 시행하였고, 세포자멸 사의 관찰에는 DAPI stairung assay를 통한 세포형태관찰을 시행하였으며, 염증관련유전자 발현 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}$B의 활성 변화를 관찰하기 위해 EMSA와 luciferase assay를 시행하였으며, DU-145에서 멜리틴과 NF-${\kappa}$B의 상호작용을 관찰하기 위해 transient transfection assay를 시행 시 세포생존율과 NF-${\kappa}$B의 활성 변동을 측정하였다. 결과 : DU-145 세포에 멜리틴을 처리한 후, 전립선암세포의 성장, 세포자멸사의 유발, 염중관련유전자 발현 및 NF-${\kappa}$B의 활성, NF-${\kappa}$B의 p50 치환 후 NF-${\kappa}$B의 활성과 DU-145 세포 증식에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. DU-145 세포에서 멜리틴을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었다. 2. DU-145 세포에서 멜리틴을 처리한 후 염증관련유전자 발현 및 NF-${\kappa}$B의 활성에 유의한 감소를 나타내었다. 3. DU-145 세포에서 NF-${\kappa}$B의 p50와 IKK들을 치환하여 작용기를 없애고 멜리틴을 처리하였을 경우에도 세포활성 및 NF-${\kappa}$B의 활성의 유의한 감소를 나타내었다.

  • PDF

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

Anti-inflammatory Effects of Lactobacillus johnsonii Lysate via Regulation of NF-κB Activity (NF-κB 활성 조절을 통한 Lactobacillus johnsonii 파쇄액의 항염 효과)

  • Hwa Jun Cha
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • In this study, the anti-inflammation efficacy of Lactobacillus johnsonii derived from Kimchi was investigated. Raw 264.7 cells, which are rat-derived macrophages, were treated with Lactobacillus johnsonii lysate to confirm the expression level of TNFα and IL1β, which are inflammatory markers, and when treating 250 ㎍/mL extract, the expression level of TNFα and IL1β decreased by 40.55% and 34.66% compared to the control group treated with 1 ㎍/mL LP, respectively. In addition, as a result of confirming the transcriptional activity of NF-κB, a key transcription factor in cytokine expression by LPS, it was confirmed that the transcriptional activity of NF-κB was 40.76% inhibited compared to the control group treated with 1 ㎍/mL LPS. Therefore, the results of this study confirmed that Lactobacillus johnsonii lysate is likely to be an anti-inflammatory or skin-soothing functional material by preventing the expression of cytokine by LPS and controlling NF-κB transcriptional activity.

Effect of Snake Venom on Cancer Growth through Induction of Apoptosis via Down Regulation of NF-${\kappa}B$ and STAT3 in the PA-1, Ovarian Cancer Cells (사독(蛇毒)이 난소암세포에 있어서 NF-${\kappa}B$와 STAT3의 활성억제와 관련된 세포자멸사유도를 통한 암세포 성장에 미치는 영향)

  • Lee, Byung-Choon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • 목적 : 최근 NF-${\kappa}B$와 STAT3의 활성억제와 관련된 항암제 연구가 주목받고 있으며, 본 연구는 사독(蛇毒)이 세포자멸사 관련 단백질의 발현 조절을 통하여 세포자멸사를 유도하고, NF-${\kappa}B$와 STAT3의 활성억제를 유도하여 난소암 PA-1 세포의 성장을 억제하는지를 확인하고, 해당 기전을 살펴보고자 하였다. 방법 : 사독을 처리한 후 난소암 PA-1 세포의 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였고, 세포자멸사 조절단백질 및 NF-${\kappa}B$, STAT3의 활성 변동 관찰에는 western blot analysis를 시행하였다. 결과 : 1. 사독을 처리한 후 난소암 PA-1 세포에서 세포자멸사가 유도되어 암세포성장이 억제되었다. 2. 사독을 처리한 후 세포자멸사 관련 단백질 중 세포자멸사 촉진 단백질인 cleaved caspase-3, Bax의 발현은 증가되었고, 세포자멸사 억제 단백질인 Bcl-2의 발현은 감소되었다. 3. 사독을 처리한 후 난소암 PA-1 세포의 NF-${\kappa}B$와 STAT3 발현은 감소되었고, 각각의 길항제인 salicylic acid와 stattic 처리 후 NF-${\kappa}B$와 STAT3 발현은 더욱 감소되었다. 결론 : 사독은 난소암 세포의 세포자멸사 유발과, NF-${\kappa}B$와 STAT3의 활성억제를 통해 치료 효율이 높고, 내성이 적은 난소암 치료제의 개발에 도움이 될 것으로 기대된다.

Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3421-3424
    • /
    • 2011
  • The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In this study, we examined oxidative modification of neurofilament-L (NF-L) induced by salsolinol. When disassembled NF-L was incubated with salsolinol, the aggregation of protein was increased with the concentration of sasolinol. The formation of carbonyl compound was obtained in salsolinol-mediated NF-L aggregates. This process was protected by free radical scavengers, such as N-acetyl-L-cysteine and glutathione. These results suggest that the aggregation of NF-L is mediated by salsolinol via the generation of free radicals. We also investigated the effects of copper ion on salsolinol-mediated NF-L modification. In the presence of copper ions, salsolinol enhanced the modification of NF-L. We suggest that salsolinol might be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of neurodegenerative diseases and related disorders.

NF-${\kappa}B$ Inhibitor Suppresses Hypoxia-induced Apoptosis of Mouse Pancreatic ${\beta}$-cell Line MIN6

  • Koh, Hyun Sook;Kim, Jae Young
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.14-24
    • /
    • 2014
  • Hypoxia is one of the main reasons for islet apoptosis after transplantation as well as during isolation. In this study, we attempted to determine the potential usefulness of NF-${\kappa}B$ inhibitor for suppression of hypoxia-induced ${\beta}$-cell apoptosis as well as the relationship between IP-10 induction and ${\beta}$-cell apoptosis in hypoxia. To accomplish this, we cultured the mouse pancreatic ${\beta}$-cell line MIN6 in hypoxia (1% $O_2$). Among several examined chemokines, only IP-10 mRNA expression was induced under hypoxia, and this induced IP-10 expression was due to NF-${\kappa}B$ activity. Since a previous study suggested that IP-10 mediates ${\beta}$-cell apoptosis, we measured hypoxia-induced IP-10 protein and examined the effect of anti-IP-10 neutralizing Ab on hypoxia-induced ${\beta}$-cell apoptosis. However, IP-10 protein was not detected, and anti-IP-10 neutralizing Ab did not rescue hypoxia-induced MIN6 apoptosis, indicating that there is no relationship between hypoxia-induced IP-10 mRNA expression and hypoxia-induced ${\beta}$-cell apoptosis. Since it was still not clear if NF-${\kappa}B$ functions as an apoptotic or anti-apoptotic mediator in hypoxia-induced ${\beta}$-cell apoptosis, we examined possible involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Treatment with 1 ${\mu}M$ NF-${\kappa}B$ inhibitor suppressed hypoxiainduced apoptosis by more than 50%, while 10 ${\mu}M$ AP-1 or 4 ${\mu}M$ NF-AT inhibitor did not, indicating involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Overall, these results suggest that IP-10 is not involved in hypoxia-induced ${\beta}$-cell apoptosis, and that NF-${\kappa}B$ inhibitor can be useful for ameliorating hypoxia-induced ${\beta}$-cell apoptosis.

NF-kB Activation by Disruption of Microtubule Array during Myogenesis of L6 Cells

  • Sangmyung Rhee;Lee, Kun-Ho;Hyockman Kwon
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1997
  • We have previously reported that NF-kB is involved in the regulation of nitric oxide synthase gene expression during differentiation of chick embryonic myoblasts. However, how NF-kB is timely activated during myogenesis remains elusive. One of the most prominent events in myogenesis is myoblast membrane fusion, which is accompanied with massive cytoskeletal reorganization. Here we show that the activity of NF-kB markedly increases in L6 rat myogenic cells that have just initiated morphological changes by treating nocodazole, a microtubule-disrupting agent. Furthermore, the induction of NF-kB activation was closely correlated with the myoblast fusion. In addition, a variety of agents that disrupt microtubules stimulated the myoblast fusion as well as the induction of NF-kB activation. In contrast, taxol, a microtubule-stabilizing agent, suppressed the induction of NF-kB activation and inhibited spontaneous differentiation of L6 cells as well. In addition, we found that the NF-KB in the cells consists of p50/p65 heterodimers. These results support the idea that reorganization of microtubule at early stages of differentiation plays a role as a signal for NF-KB activation during myogenesis.

  • PDF

Inhibition of NF-kB/Rel by Paclitaxel in Mouse Macrophages

  • Lim, Jin-Soo;Lee, Seog-Ki;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • We demonstrate that paclitaxel, an antitumor agent derived from yew tree, inhibits LPS- and $IFN-{\gamma}$-induced NF-kB/Rel activation in RAW 264.7 cells. Previously, paclitaxel ($>10{\mu}M$) has been known to induce iNOS gene expression in macrophages. However, in the previous report we described that the pretreatment of macrophages with low concentration of paclitaxel ($0.1{\mu}M$) for 8 h inhibited LPS-induced iNOS gene expression. Pretreatment of RAW 264.7 cells with paclitaxel significantly inhibited NF-kB/Rel transcriptional activation. Electrophoretic mobility shift assay further confirmed that pretreatment of macrophages with paclitaxel inhibited NF-kB/Rel DNA binding. Taxotere, a semisynthetic analog of paclitaxel, also inhibited LPS- and $IFN-{\gamma}$-induced iNOS gene expression. Collectively, these series of experiments indicate that paclitaxel inhibits iNOS gene expression by blocking NF-kB/Rel activation.

The Apoptotic Effect of Bee Venom and Melittin on FBS-induced Vascular Smooth Muscle Cells Proliferation (봉약침액과 melittin의 세포고사 효과가 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 미치는 영향)

  • Han, Jae-Choon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.91-102
    • /
    • 2006
  • 목적 : 이 연구에서는 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 대한 봉약침액과 Melittin의 세포 고사효과의 영향 및 작용 기전을 살펴보고자 하였다. 방법 : $I{\kappa}Ba$, p-$I{\kappa}Ba$, p-ERK1/2, p-Akt, p53, Bcl-2, Bax 및 active caspase-3는 Western blotting을, $NF-{\kappa}B$는 EMSA와 immunofluorescence staining을 이용하여 측정하였다. 결과 : 1. Melittin은 $NF-{\kappa}B$ 활성에 대하여 $I{\kappa}Ba$의 인산화를 유의하게 익제하고 $I{\kappa}Ba$를 증가시켰으며, $NF-{\kappa}B$의 DNA 결합과 $NF-{\kappa}B$ p50의 핵 내 유입을 유의하게 감소시켰다. 2. Melittin은 $NF-{\kappa}B$ 활성을 증가시키는 물질인 Akt의 인산화를 유의하게 억제하였고, ERK1/2의 인산화도 억제하였다. 3. Melittin은 세포사멸 전구 단백질인 p53, Bax 및 caspase-3의 발현을 유의하게 증가시켰고, 세포사멸억제 단백질인 Bcl-2의 발현은 감소시켰다. 결론 : 이상의 결과는 $NF-{\kappa}B$ 와 Akt 활성을 억제함으로써 혈관평활근세포 증식을 억제하는 효과가 있음을 입증한 것이며, 향후 안전성 연구를 바탕으로 혈관성형술 후 재발성협착증과 동맥경화증의 치료제로 사용될 수 있을 것으로 기대된다.

  • PDF