• Title/Summary/Keyword: NF-kB activation

Search Result 809, Processing Time 0.028 seconds

Regulatory mechanism of Angelica Gigas extract powder on matrix metalloproteinases in vitro and in vivo model (참당귀 추출분말이 in vitro and in vivo model에서 MMPs 조절 기전)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.361-369
    • /
    • 2015
  • The precise mechanism underlying the therapeutic efficacy of an extraction powder of Angelica gigas (AGE) for the treatment of degenerative osteoarthritis was investigated in primary cultured rabbit chondrocytes and in a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. The treatment with AGE (50 μg/mL) effectively inhibited NF-B activation. The anti-inflammatory mechanism was clarified by gelatin zymography and western blotting measurements of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities. The AGE (50 μg/mL) treatment significantly reduced MMP-9 activity. The constituents of AGE— decursinol, decursin, and decursinol angelate—were determined by LC-MS/MS after a 24 hr treatment of rabbit chondrocytes. The contents of the major products, decursin and decursinol angelate, were 3.62±0.47 and 2.14 ±0.36 μg/mg protein, respectively in AGE-treated (50 μg/mL) rabbit chondrocytes. An in vivo animal study on rats fed a diet containing 25, 50, and 100 mg/kg AGE for 3 weeks revealed a significant inhibition of the MMPs in the MIA-induced rat articular cartilage. The genetic expression of arthritic factors in the articular cartilage was examined by RT-PCR of collagen Type I, collagen Type II, aggrecan, and MMP (MMP3, MMP-9, MMP13). Specifically, AGE up-regulated the expression of collagen Type I, collagen Type II, and aggrecan and inhibited MMP levels at all tested concentrations. Collectively, AGE showed a strong specific site of action on MMP regulation and protected against the degeneration of articular cartilage via cellular regulation of MMP expression both in vitro and in vivo.

Improvement of Anti-Inflammation Activity of Gardeniae fructus Extract by the Treatment of β-Glucosidase (β-Glucosidase 처리에 의한 치자추출물의 항염증 활성 증진)

  • Shon, Dong-Hwa;Choi, Dae-Woon;Kim, Mi-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2012
  • In this study, we selected Gardeniae fructus (GF) as an anti-inflammatory functional material and improved the biological activity of GF through the treatment of ${\beta}$-glucosidase. For the simple evaluation of anti-inflammatory activity, the inhibitory activity of GF extract (GFE) on the production of NO by RAW264.7 cells in the presence of LPS was examined. ${\beta}$-glucosidase originating from Aspergillus niger or Aspergillus fumigatus has effectively improved the anti-inflammatory activity of GFE. The enzyme treatment raised the activity of GFE by more than 10 times. The optimum conditions for the enzyme reaction were at pH 4.6, $45^{\circ}C$, and 20 U/mL for 24 h with agitation. In addition, in vitro production of cytokines (IL-$1{\beta}$, IL-6, TNF-${\alpha}$), COX-2, and the NF-${\kappa}B$ activation of RAW264.7 cells decreased more in the presence of GFE treated with ${\beta}$-glucosidase originating from Aspergillus niger (GFAN) than in the presence of GFE. These results suggest that enzyme-treated GFE might be a potential candidate for natural anti-inflammatory food materials.

Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling (TNF 신호전달에서 RIPK와 MLKL의 기능적 생리적 특성)

  • Park, Young-Hoon;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.868-874
    • /
    • 2016
  • Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are members of the serine or threonine protein kinase superfamily that phosphorylates the hydroxyl group of serine or threonine through the highly conserved kinase region. The RIPK family plays a crucial role not only in inflammation and innate immunity, but also in mediating programmed cell death, such as apoptosis and necroptosis. The interaction between RIPK1 and other TNFR1-related proteins has been shown to assemble a signaling complex I that controls activation of the pro-survival transcription factor NF-κB upon binding of cytokines to TNF receptor 1 (TNFR1). Moreover, RIPK1 and RIPK3 interact through their RIP homotypic interaction motifs (RHIMs) to mediate programmed necrosis, which has long been considered an accidental and uncontrolled cell death form with morphological characteristics differing from those of apoptosis. Highly conserved sequences of RHIM in RIPK1 and RIPK3 were shown to regulate their binary interaction, leading to assembly of a cytosolic amyloid complex termed the “necrosome”. The necrosome also contains mixed lineage kinase domain-like protein (MLKL), which has been found recently to be a substrate of RIPK3 to mediate downstream signaling. This review provides an overview of the functional and physiological characteristics of RIPKs and MLKL in TNF signaling.

Protective Effects of Chijabaegpi-tang on Atopic Dermatitis in TNF-α/IFNγ-induced HaCaT Cells (피부각질세포에서 치자백피탕(梔子柏皮湯)의 아토피 피부염 개선효과)

  • Eun, So Young;Yoon, Jung Joo;Kim, Hye Yoom;Ahn, You Mee;Han, Byung Hyuk;Hong, Mi Hyeon;Son, Chan Ok;Na, Se Won;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.226-231
    • /
    • 2018
  • Chijabaegpi-tang (CHG) is an oriental herbal medicine that has been used for its various pharmacological effects, which include anti-inflammatory, anti-oxidant and immunoregulation activities. In the present study, we investigated which skin inflammations are involved in the $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cells. We investigated the suppressive effect of CHG on $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8); thymus and activation-regulated chemokine (TARC)/CCL17. The pre-treatment of HaCaT cells with CHG suppressed $TNF-{\alpha}/IFN{\gamma}$-induced nuclear transcription factor kappa-B ($NF-{\kappa}B$). In addition, CHG inhibited $TNF-{\alpha}/IFN{\gamma}$-induced phosphorylation of ERK and p38. $TNF-{\alpha}/IFN{\gamma}$ suppressed the expression of skin barrier proteins, including filaggrin (FLG), Involucrin (IVL) and loricrin (LOR). By contrast, CHG restored the expression of FLG, IVL and LOR. Taken together, our findings suggest that CHG could be a therapeutic agent for prevention of skin disease, including atopic dermatitis.

Yangkyuksanhwa-tang effected to Atopic Dermatitis (양격산화탕(凉膈散火湯)이 Atopy 피부염(皮膚炎)에 미치는 영향(影響))

  • Yun, Bo-Hyun;Park, Seong-Sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.16 no.2
    • /
    • pp.84-98
    • /
    • 2004
  • 1. Objectives Yangkyuksanhwa-tang is used mush in pruritus and dermatopathy of Soyangin. It is suggested this prescription is effective on atopy dermatitis. 2. Methods For observation of Yangkyuksanhwa-tang effected to atopic dermatitis, extract of Yangkyuksanhwa-tang has been dispensed to the stratum corneum of epithelium in dermatome of murine after making damage to its defense mechanism against fat and causing atopic dermatitis artificially. After that, the change in outer dermatome and minute mechanism of epidermis, the change of eosinophil, the change in distribution of soybean agglutinin, the change in distribution of fat and ceramide in stratum corneum, the change in inflammation in dermatome, the change of cell accrementition and apoptosis, and the effect on anaphylaxis and Staphylococcus aureus was observed. 3. Results After administration of Yangkyuksanhwa-tang, severe skin damage such as eczema and psoriasis, that was observed in the case of atopy dermatitis, was decreased and the increase of eosinophil in serum was suppressed. Lipid lamella was recovered, so epidermal demage was relieved. The distribution of HSP70 in the outer skin was decreased. Yangkyuksanhwa-tang suppressed activation of $NF-_{\kappa}B$ p50, induced CD11/18b not to be generated, and suppressed inflammatory response of skin. Anaphylaxis and groth of Staphylococcus aureus was suppressed. 4. Conclusions Yangkyuksanhwa-tang decreased skin damage of atopy dermatitis. It has antibiosis about Staphylococcus aureus, it can be medicinal substances on atopy dermatitis. In addition, it is possible that it can be medicinal substances on regional skin allergy.

  • PDF

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

A Study on Antitumor Effect and Mechanism of Cortex ulmi pumilae Water Extract on HepG2 Hepatoma cell (유근피(楡根皮) 추출액(抽出液)이 HeoG2 간암세포(肝癌細胞)에 미치는 항암효과(抗癌效果) 및 기전(機轉)에 대(對)한 연구(硏究))

  • Choi, Su-Deock;Park, Young-Kweon;Kim, Gang-San;Kang, Byung-Ki;Han, Sang-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.259-266
    • /
    • 2000
  • Objectives : The effects of aqueous extracts of Cortex ulmi pumilae (a traditional medicine for cancer treatment in oriental medicine) on the induction of apoptotic cell death were investigated in human liver origm hepatoma cell lines, HepG2. Methods : The death of HepG2 cells was markedly induced by the addition of extracts of Cortex ulmi pumilae in a dose-dependent manner. The apoptotic characteristic ladder pattern of DNA strand break was not observed in cell death of HepG2. In addition, it was not shown nucleus chromatin condensation and fragmentation under hoechst staining. However, by the using annexin V staining assay, externalizations of phosphatidylserine in HepG2 cell which were treated with Cortex ulmi pumilae extracts were detected in the early time (at 9 hr after extract treatment). Furthermore, LDH release was not detected in this early stage. Therefore, Cortex ulmi pumilae extracts-induced cell death of HepG2 cells is mediated by apoptotic death signal processes. Result : The activity of caspase 3-like proteases remained in a basal level in HepG2 cells which treated with the extract of Cordyceps sinensis. However, it was markedly increased in HepG2 cells which treated with two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) which were differently extracted (respectively, 2.3 and 3.3 fold). On a while, the phosphotransferase activities of JNK1 was markedly induced in HepG2 cells which were treated with two extracts of Cortex ulmi pumilae. On the contrary, the activation of transcriptional activator, activating protein1(AP-1) and NF-kB were severely decreased by these two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K). In addition, antioxidants (GSH and NAC) and intracellular $Ca2^+$ level regulator (Bapta/AM and Thapsigargin) did not affect Cortex ulmi pumilae extracts-induced apoptotic death of HepG2 cells. Conclusions : In conclusion, our results suggest that two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) induces the apoptotic death of human liver origin hepatoma HepG2 cells via activation of caspase 3-like proteases as well as JNK1, and inhibition of transcriptional activators, AP-1 and $NK-{\kappa}B$.

  • PDF

15-Deoxy-${\Delta}^{12,14}$-Prostaglandin $J_2$ Upregulates the Expression of LPS-Induced IL-8/CXCL8 mRNA in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats

  • Kim, Jung-Hae;Kim, Hee-Sun
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.64-73
    • /
    • 2009
  • Background: 15d-$PGJ_2$ has been known to act as an anti-inflammatory agent and has anti-hypertensive effects. As a result of these properties, we examined the effect of 15d-$PGJ_2$ on the LPS-induced IL-8/CXCL8 mRNA expression in VSMCs from SHR. Methods: Effect and action mechanism of 15d-$PGJ_2$ on the expression of LPS-induced IL-8/CXCL8 mRNA in VSMCs from SHR and WKY were examined by using real-time polymerase chain reaction, electrophoretic mobility shift assay for NF-${\kappa}B$ avtivity, Western blotting analysis for ERK and p38 phosphorylation and flow cytometry for NAD(P)H oxidase activity. Results: 15d-$PGJ_2$ decreased the expression of LPS-induced IL-8/CXCL8 mRNA in WKY VSMCs, but increased the expression of LPS-induced IL-8/CXCL8 mRNA in SHR VSMCs. The upregulatory effect of 15d-$PGJ_2$ in SHR VSMCs was mediated through PPAR${\gamma}$, and dependent on NF-${\kappa}B$ activation and ERK phosphorylation. However, inhibition of the p38 signaling pathway augmented the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA. A NAD(P)H oxidase inhibitor inhibited the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA expression in SHR VSMCs, and an increase in NAD(P)H oxidase activity was detected in SHR VSMCs treated with 15d-$PGJ_2$/LPS. Conclusion: Our results indicate that the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 expression in SHR VSMCs is mediated through the PPAR${\gamma}$ and ERK pathway, and may be related to NAD(P)H oxidase activity. However, p38 inactivation may also play an important role in 15d-$PGJ_2$/LPS-induced IL-8/CXCL8 expression in SHR VSMCs.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.

Study of the Effect and Underlying Mechanism of Clove Extract on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (정향(丁香) 추출물이 골관절염 흰쥐에 미치는 효과 및 기전 연구)

  • Jin A Lee;Min Ju Kim;Seong-Wook Seo;Mi-Rae Shin
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.6
    • /
    • pp.1089-1104
    • /
    • 2022
  • Objective: The aim of this study was to identify the efficacy and underlying mechanism of cloves as an osteoarthritis (OA) treatment in a monosodium iodoacetate (MIA)-induced rat OA model. Osteoarthritis (OA) is nowadays one of the most prevalent degenerative joint diseases. Methods: Sprague-Dawley rats treated with MIA (50 μL; 80 mg/mL) were used as in vivo OA models. Cloves (100 and 200 mg/kg b.w.) were administered orally once daily for 2 weeks from 7 days after MIA injection. Changes in hindpaw weight distribution (HWD) were measured as a joint discomfort index. Activation markers related to inflammatory responses and cartilage degeneration in the right knee joints were evaluated by serum analysis and western blotting. Results: HWD decreased in the MIA control group but showed a dose-dependent elevation after clove treatment. Clove treatment inhibited inflammatory factors by PI3K/Akt/NF-κB signaling pathways, while also activating antioxidant factors through Sirt1/AMPK signaling pathways. Clove treatment also suppressed matrix metalloproteinase (MMP) overexpression and significantly increased the levels of tissue inhibitors of metalloproteinases (TIMPs). Conclusions: Treatment with cloves effectively reversed MIA-induced effects. Therefore, clove treatment could have the potential to protect against or treat OA.