• Title/Summary/Keyword: NF-kB activation

Search Result 806, Processing Time 0.026 seconds

Relationship of Inhibitory Effects of Dichroa febrifuga and $IKK{\gamma}$ on the Activation of $NF-{\kappa}B$ (상산의 $NF-{\kappa}B$ 활성억제작용과 $IKK{\gamma}$의 연관성 연구)

  • Choi, Byung-Tae;Lee, Yong-Tae;Hwang, Jang-Sun;Moon, Hae-In;Lee, Kyung-Soo;An, Won-Gun;Kim, Dong-Wan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.651-656
    • /
    • 2006
  • Activation of $NF-{\kappa}B$ is known to be a trigger of various cellular disorders including inflammatory and autoimmune diseases such as rheumatoid arthritis. Numerous approaches are ongoing within laboratories to identify potential therapeutic agents which inhibit the $NF-{\kappa}B$ activation. In this study, we have tested the inhibitory effects of five traditional medicines on the activation of $NF-{\kappa}B$ by NIK. Among three medicines which exhibited inhibitory effect on the expression of $NF-{\kappa}B$ repoter plasmid, we investigated further the inhibitory mechanism of Dichroa febrifuga in connection with IKKY activity. Wild type $IKK{\gamma}$ inhibited the $NF-{\kappa}B$ activation by NIK but the C-terminal deletion mutant of IKKY did not show the inhibitory effect, indicating that the C-terminal leucine zipper domain of $NF-{\kappa}B$ is important for the inhibition of $NF-{\kappa}B$ activation. The water extract of Dichroa febrifuga(DFE) also strongly inhibited the $NF-{\kappa}B$ activation by NIK. The inhibitory activity of DFE appeared to be independent of the expression of $IKK{\gamma}$, suggesting that the pathways of inhibition by Dichroa febrifuga and $IKK{\gamma}$ are different. Our results suggest that Dichroa febrifuga can be used as a medicine for inhibition of the $NF-{\kappa}B$ activation in a wide range of cells without relation to the expression of $IKK{\gamma}$.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Inhibition of NF-kB/Rel by Paclitaxel in Mouse Macrophages

  • Lim, Jin-Soo;Lee, Seog-Ki;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • We demonstrate that paclitaxel, an antitumor agent derived from yew tree, inhibits LPS- and $IFN-{\gamma}$-induced NF-kB/Rel activation in RAW 264.7 cells. Previously, paclitaxel ($>10{\mu}M$) has been known to induce iNOS gene expression in macrophages. However, in the previous report we described that the pretreatment of macrophages with low concentration of paclitaxel ($0.1{\mu}M$) for 8 h inhibited LPS-induced iNOS gene expression. Pretreatment of RAW 264.7 cells with paclitaxel significantly inhibited NF-kB/Rel transcriptional activation. Electrophoretic mobility shift assay further confirmed that pretreatment of macrophages with paclitaxel inhibited NF-kB/Rel DNA binding. Taxotere, a semisynthetic analog of paclitaxel, also inhibited LPS- and $IFN-{\gamma}$-induced iNOS gene expression. Collectively, these series of experiments indicate that paclitaxel inhibits iNOS gene expression by blocking NF-kB/Rel activation.

Quercitrin Gallate Down-regulates Interleukin-6 Expression by Inhibiting Nuclear Factor-kB Activation in Lipopolysaccharide-stimulated Macrophages

  • Min, Kyung-Rak;Kim, Byung-Hak;Chang, Yoon-Sook;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Quercitrin gallate was previously isolated from Persicaria lapathifolia (Polygonaceae) as an inhibitor of superoxide production. In the present study, quercitrin gallate was found to inhibit interleukin (IL)-6 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $63\;{\mu}M$. Furthermore, quercitrin gallate attenuated LPS-induced synthesis of IL-6 transcript but also inhibited LPS-induced IL-6 promoter activity, indicating that the compound could down-regulate IL-6 expression at the transcription level. Since nuclear factor (NF)-kB has been shown to play a key role in LPS-inducible IL-6 expression, an effect of quercitrin gallate on LPS-induced NF-kB activation was further analyzed. Quercitrin gallate exhibited a dosedependent inhibitory effect on LPS-induced nuclear translocation of NF-kB without affecting inhibitory kB (IkB) degradation, and subsequently inhibited LPS-induced NF-kB transcriptional activity in macrophages RAW 264.7. Taken together, quercitrin gallate down-regulated LPS-induced IL-6 expression by inhibiting NF-kB activation, which could provide a pharmacological potential of the compound in IL-6-related immune and inflammatory diseases.

Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-κB Activation

  • Lee, Na-Rae;Kim, Hye-In;Choi, Myung-Soo;Yi, Chae-Min;Inn, Kyung-Soo
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.759-764
    • /
    • 2015
  • Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-${\kappa}B$ and interferon production. TRIM25 is required for the full activation of NF-${\kappa}B$ at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-${\kappa}B$ activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-${\kappa}B$.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Lactobacillus johnsonii CJLJ103 Attenuates Scopolamine-Induced Memory Impairment in Mice by Increasing BDNF Expression and Inhibiting NF-κB Activation

  • Lee, Hae-Ji;Lim, Su-Min;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1443-1446
    • /
    • 2018
  • In the present study, we examined whether Lactobacillus johnsonii CJLJ103 (LJ) could alleviate cholinergic memory impairment in mice. Oral administration of LJ alleviated scopolamine-induced memory impairment in passive avoidance and Y-maze tasks. Furthermore, LJ treatment increased scopolamine-suppressed BDNF expression and CREB phosphorylation in the hippocampi of the brain, as well as suppressed $TNF-{\alpha}$ expression and $NF-{\kappa}B$ activation. LJ also increased BDNF expression in corticosterone-stimulated SH-SY5Y cells and inhibited $NF-{\kappa}B$ activation in LPS-stimulated microglial BV2 cells. However, LJ did not inhibit acetylcholinesterase activity. These findings suggest that LJ, a member of human gut microbiota, may mitigate cholinergic memory impairment by increasing BDNF expression and inhibiting $NF-{\kappa}B$ activation.

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on $NF{\kappa}B$ Activation and Apoptosis of Kupffer Cells (청간해주탕(淸肝解酒湯)이 kupffer cell의 $NF{\kappa}B$ 활성화 및 세포사멸에 미치는 영향)

  • Han Chang-Woo;Kim Young-Chul;Woo Hong-Jung;Lee Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.59-70
    • /
    • 2004
  • Objectives : Previous studies showed that treatment with Chungganhaeju-tang prevents hepatic inflammation and apoptosis in alcoholic liver disease. The purpose of our study is to determine if any relations exsists between the transcription factor $NF{\kappa}B$, an orchestrating expression of a large number of genes and inhibitory effects of Chungganhaeju-tang on ethanol induced apoptosis. Materials and Methods : To assess the role of $NF{\kappa}B$, we blocked NFkB activation by delivering to the kupffer cells $I{\kappa}B{\Delta}N$, a dominant negative $NF{\kappa}B$ inhibitor, and investigated if Chungganhaeju-tang still prevented apoptosis. Results : When $NF{\kappa}B$ activation was blocked, there was no inhibitory effect of Chungganhaeju-tang on ethanol induced apoptosis of kupffer cells. Conclusion : This result suggests that Chungganhaeju-tang protects the liver from ethanol induced apoptosis by activating the $NF{\kappa}B$ that plays a key role in porotecting mechanism and reducing inflammatory cytokine gene expression.

  • PDF

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.