• Title/Summary/Keyword: NF-L

Search Result 487, Processing Time 0.036 seconds

Fermented Product Extract with Lentinus edodes Attenuate the Inflammatory Mediators Releases and Free Radical Production

  • Shim, Sun-Yup;Lee, Mina
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • Lentinus edodes contains functional metabolites such as polysaccharopeptides, lectins, and secondary metabolites. Fermented soybean paste is representative fermented materials in Korea, and is gradually increasing due to various biological activities. In the present study, ethanol extracts of fermented products with/without L. edodes were designated as SPL and SP, and prepared to develop safer and therapeutic functional foods with antioxidant and anti-inflammatory activities for treatment of inflammatory disorders. SP and SPL extracts exhibited antioxidant effects via inhibiting radical activities. Inflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) production and nuclear factor-kappa B (NF-κB) activation were down-regulated by two extracts. SPL extract more strongly enhanced the antioxidant and anti-inflammatory activities than SP extract. Its' activities shown more longer fermentation period and more strong inhibitory effects. Taken together, our results suggested that fermented product with medicinal plant has synergic effect and SPL can be a potential candidate for treatment of inflammatory bowel diseases.

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim;Woo Soo Jeong;So-Young Kim;Soo-Hwan Yeo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.65-77
    • /
    • 2023
  • In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells

  • Kang, Yang Ho;Jin, Jung Sook;Son, Seok Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Osteoprotegerin (OPG), receptor activator of NF-${\kappa}B$ ligand (RANKL)/receptor activator of NF-${\kappa}B$ (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with ${\beta}$-glycerophosphate (${\beta}$-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without ${\beta}$-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with ${\beta}$-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing ${\beta}$-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.

The Inhibitory Effects of GHJ on Allergic Inflammatory Response in Human Mast Cells (HMC-1) (고삼, 형개, 자초 혼합물(GHJ)의 인간비만세포에서의 항염증 효과)

  • Hwang, Man Ki;Choi, Young Jin;Kim, Min Ju;Lee, Bina;Jung, Hyuk Sang;Sohn, Youngjoo
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.167-177
    • /
    • 2017
  • Objectives : This study aimed to evaluate inhibitory effects of GHJ on allergic inflammatory response in human mast cells (HMC-1). Methods : To investigate the inhibitory effect of GHJ (62.5, 125, 250, 500, $1000{\mu}g/mL$), HMC-1 cells were stimulated with phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI). Enzyme-linked immunosorbent assays (ELISAs), RT-PCR and Western blot analysis were investigated using GHJ extract. Results : GHJ inhibited levels of $TNF-{\alpha}$ and IL-6 of $1000{\mu}g/mL$ concentration in ELISA and mRNA expression. GHJ had inhibitory effects in level of MAPKs, $p-I{\kappa}B-{\alpha}$ and p-NF-kB also. GHJ attenuated Compound 48/80-stimulated histamine release. In addition, GHJ inhibited PCA reaction in vivo. Conclusion : This study indicated that GHJ extract can inhibit allergic responses in HMC-1 cell.

Treatment of natural rubber wastewater by membrane technologies for water reuse

  • Jiang, Shi-Kuan;Zhang, Gui-Mei;Yan, Li;Wu, Ying
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • A series of laboratory scale experiments were performed to investigate the feasibility of membrane separation technology for natural rubber (NR) wastewater treatment and reuse. Three types of spiral wound membranes were employed in the cross-flow experiments. The NR wastewater pretreated by sand filtration and cartridge filtration was forced to pass through the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes successively. The UF retentate, which containing abundant proteins, can be used to produce fertilizer, while the NF retentate is rich in quebrachitol and can be used to extract quebrachitol. The permeate produced by the RO module was reused in the NR processing. Furthermore, about 0.1wt% quebrachitol was extracted from the NR wastewater. Besides, the effluent quality treated by the membrane processes was much better than that of the biological treatment. Especially for total dissolved solids (TDS) and total phosphorus (T-P), the removal efficiency improved 53.11% and 49.83% respectively. In addition, the removal efficiencies of biological oxygen demand (BOD) and chemical oxygen demand (COD) exceeded 99%. The total nitrogen (T-N) and ammonia nitrogen (NH4-N) had approximately similar removal efficiency (93%). It was also found that there was a significant decrease in the T-P concentration in the effluent, the T-P was reduced from 200 mg/L to 0.34 mg/L. Generally, it was considered to be a challenging problem to solve for the biological processes. In brief, highly resource utilization and zero discharge was obtained by membrane separation system in the NR wastewater treatment.

The Role of Transglutaminase-2 in Fibroproliferation after Lipopolysaccharide-induced Acute Lung Injury (리포다당질로 유도된 급성 폐손상 후 섬유화증식에서 Transglutaminase-2의 역할)

  • Kim, Je-Hyeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.337-347
    • /
    • 2010
  • Background: Transglutaminase-2 (TG-2) has been reported to play an important role in the process of fibrosis. However, TG-2 studies on fibroproliferation of acute lung injury (ALI) are absent. The purpose of this study was to investigate the role of TG-2 in the fibroproliferation of lipopolysaccharide (LPS)-induced ALI. Methods: The male C57BL/6 mice of 5 weeks age were divided into 3 groups; control group (n=30) in which $50{\mu}L$ of saline was given intratracheally (IT), LPS group (n=30) in which LPS 0.5 mg/kg/$50{\mu}L$ of saline was given IT, and LPS+Cyst group treated with intraperitoneal 200 mg/kg of cystamine, competitive inhibitor of TG-2, after induction of ALI by LPS. TG-2 activity and nuclear factor $(NF)-{\kappa}B$ were measured in lung tissue homogenate. Tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and transforming growth factor (TGF)-${\beta}1$ were measured using bronchoalveolar lavage fluids. Histopathologic ALI score and Mallory's phosphotunistic acid hematoxylin (PTAH) for collagen and fibronectin deposition were performed. Results: The TG-2 activities in the LPS group were significantly higher than the control and LPS+Cyst groups (p<0.05). The TNF-${\alpha}$ and IL-$1{\beta}$ concentrations and $NF-{\kappa}B$ activity were lower in the LPS+Cyst group than the LPS group (p<0.05). The LPS+Cyst group showed lower MPO, ALI score, TGF-${\beta}1$ concentration, and Mallory's PTAH stain than the LPS group, but the differences were not significant (p>0.05). Conclusion: Inhibition of TG-2 activity in the LPS-induced ALI prevented early inflammatory parameters, but had limited effects on late ALI and fibroproliferative parameters.

Ethanol extract of Callophyllis japonica enhances nitric oxide and tumor necrosis factor-alpha production in mouse macrophage cell line, RAW 264.7 cells

  • Ahn, Mee-Jung;Park, Dal-Soo;Yang, Won-Hyung;Go, Gyung-Min;Kim, Hyung-Min;Hyun, Jin-Won;Park, Jae-Woo;Shin, Taek-Yun
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.341-347
    • /
    • 2007
  • Red seaweed (Callophyllis japonica) has long formed part of the diet of Asians, but the pharmacological properties of this plant have not been evaluated. In this study, we examined the effect of an ethanol extract of C. japonica on the generation of nitric oxide (NO) in RAW 264.7 cells. The C. japonica extract increased the generation of NO and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), which were detected by the Griess method and an enzyme-linked immunosorbent assay, respectively. The increased production of NO by C. japonica extract was inhibited by $N^G$-monomethyl-L-arginine ($100{\mu}M$), a specific inhibitor of NO production in the L-arginine-dependent pathway, and by the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) inhibitor, pyrrolidine dithiocarbamate ($10-100{\mu}M$) in a dose-dependent manner. These findings demonstrate that C. japonica extract stimulates the production of NO and $TNF-{\alpha}$ in RAW 264.7 cells through the activation of $NF-{\kappa}B$ and that this extract might also inhibit the growth of the human leukemic cells.

Selection and immunomodulatory evaluation of lactic acid bacteria suitable for use as canine probiotics (개 생균제 사용에 적합한 유산균주의 선발 및 면역활성 평가)

  • Park, Su-Min;Park, Ho-Eun;Lee, Wan-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.81-88
    • /
    • 2015
  • This study was conducted to isolate lactic acid bacteria (LAB) from dog intestine and identify potential probiotic strains for canine use. One hundred and one LAB were isolated from feces of 20 healthy dogs. Acid, bile, and heat resistance along with adherence to Caco-2 cells and antimicrobial activity against pathogens were examined. To analyze immunomodulative effects, the production of nitric oxide (NO), TNF-${\alpha}$, and IL-$1{\beta}$ was measured using RAW 264.7 macrophages. Additionally, RAW BLUE cells were used to evaluate nuclear factor-${\kappa}B$ (NF-${\kappa}B$) generation. Ultimately, three strains were selected as canine probiotics and identified as Lactobacillus reuteri L10, Enterococcus faecium S33, and Bifidobacterium longum B3 by 16S rRNA sequence analysis. The L10 and S33 strains showed tolerance to pH 2.5 for 2 h, 1.0% Oxgall for 2 h, and $60^{\circ}C$ for 5 min. These strains also had strong antimicrobial activity against Escherichia coli KCTC 1682, Salmonella Enteritidis KCCM 12021, Staphylococcus aureus KCTC 1621, and Listeria monocytogenes KCTC 3569. All three strains exerted better immunomodulatory effects than Lactobacillus rhamnosus GG (LGG), a well-known commercial immunomodulatory strain, based on NO, NF-${\kappa}B$, IL-$1{\beta}$, and TNF-${\alpha}$ production. These results suggested that the three selected strains could serve as canine probiotics.

Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

  • Kim, Seung-Jae;Cha, Ji-Young;Kang, Hye Suk;Lee, Jae-Ho;Lee, Ji Yoon;Park, Jae-Hyung;Bae, Jae-Hoon;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.276-281
    • /
    • 2016
  • Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation.