• 제목/요약/키워드: NF-${\kappa}B$ pathway

검색결과 470건 처리시간 0.027초

Preventive and Therapeutic Effects of Quercetin on Experimental Radiation Induced Lung Injury in Mice

  • Wang, Juan;Zhang, Yuan-Yuan;Cheng, Jian;Zhang, Jing-Ling;Li, Bao-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2909-2914
    • /
    • 2015
  • Objective: To investigate the protective effect of quercetin on radiation induced lung injury (RILI) and related mechanisms. Materials and Methods: Mice treated with radiation and/or quercetin were sacrificed at 1-8 weeks after irradiation under anesthesia. Lung tissues were collected for histological examination. Immunohistochemistry (IHC) and Western blotting were performed to detect the protein expression of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and Mitogen-activated protein kinases (MAPK) pathway. Results: Hematoxylin and eosin (HE) staining showed that radiation controls displayed more severe lung damage than quercetin groups, either high or low dose. Results of IHC and Western blotting demonstrated the expression level of $NF-{\kappa}B$ to be decreased and that of an inhibitor of $NF-{\kappa}B$ ($I{\kappa}b-{\alpha}$) to be increased by the quercetin intervention compared with the radiation control group. Numbers of JNK/SAPK, p38 and p44/p42 positive inflammatory cells were decreased in the radiation+quercetin injection group (P<0.05). Conclusions: Quercetin may play a radio-protective role in mice lung via suppression of $NF-{\kappa}B$ and MAPK pathways.

The Inhibitory Effects of Bee Venom and Melittin on the Proliferation of Vascular Smooth Muscle Cells

  • Ha, Seong-Jong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제23권2호
    • /
    • pp.139-157
    • /
    • 2006
  • In the present study, I have investigated the bee venom (BV) and melittin (a major component of BV) -mediated anti-proliferative effects, and defined its mechanisms of action in cultured rat aortic vascular smooth muscle cells (VSMCs). BV and melittin $(0.4{\sim}0.8\;{\mu}g/ml)$ effectively inhibited 50 ng/ml platelet derived growth factor BB (PDGF-BB)-induced VSMCs proliferations. The regulation of apoptosis has attracted much attention as a possible means of eliminating excessively proliferating VSMCs. In the present study, the treatment of BV and melittin strongly induced apoptosis of VSMCs. I examined the effects on $NF-{\kappa}B$ activation to investigate a possible mechanism for anti-proliferative effects of BV and melittin, the PDGF-BB-induced $I{\kappa}B{\alpha}$ phosphorylation and its degradation were potently inhibited by melittin, and DNA binding activity and nuclear translocation of $NF-{\kappa}B$ p50 subunit in response to the action of PDGF-BB were potently attenuated by melittin. In further investigations, melittin markedly inhibited the PDGF-BB-induced phosphorylation of Akt but not ERK1/2, upstream signals of $NF-{\kappa}B$. Treatment of melittin also potently induced pro-apoptotic protein p53, Bax, and caspase-3 expression, but decreased anti-apoptotic protein Bcl-2 expression. These results suggest that the anti-proliferative effects of BV and melittin in VSMCs through induction of apoptosis via suppressions of $NF-{\kappa}B$ and Akt activation, and enhancement of apoptotic signal pathway. Based on these results, BV acupuncture can be a candidate as a therapeutic method for restenosis and atherosclerosis.

  • PDF

Anti-Inflammatory Activity of Vacuum Distillate from Panax ginseng Root on LPS-Induced RAW264.7 Cells

  • Chanwoo Lee;Seul Lee;Young Pyo Jang;Junseong Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.262-269
    • /
    • 2024
  • Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • 제7권6호
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Diclofenac Inhibits Phorbol Ester-Induced Gene Expression and Production of MUC5AC Mucin via Affecting Degradation of IkBα and Translocation of NF-kB p65 in NCI-H292 Cells

  • Jin, Fengri;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.431-436
    • /
    • 2020
  • In this study, diclofenac, a non-steroidal anti-inflammatory drug, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. The human respiratory epithelial NCI-H292 cells were pretreated with diclofenac for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of diclofenac on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Diclofenac suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest diclofenac regulates the gene expression and production of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.303-310
    • /
    • 2021
  • In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.

Betulin, an Anti-Inflammatory Triterpenoid Compound, Regulates MUC5AC Mucin Gene Expression through NF-kB Signaling in Human Airway Epithelial Cells

  • Hossain, Rajib;Kim, Kyung-il;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.540-545
    • /
    • 2022
  • Betulin is a triterpenoid natural product contained in several medicinal plants including Betulae Cortex. These medicinal plants have been used for controlling diverse inflammatory diseases in folk medicine and betulin showed anti-inflammatory, antioxidative, and anticancer activities. In this study, we tried to examine whether betulin exerts a regulative effect on the gene expression of MUC5AC mucin under the status simulating a pulmonary inflammation, in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with betulin for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h or the indicated periods. The MUC5AC mucin mRNA expression and mucin glycoprotein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. To elucidate the action mechanism of betulin, effect of betulin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated by western blot analysis. The results were as follows: 1) Betulin significantly suppressed the production of MUC5AC mucin glycoprotein and down-regulated MUC5AC mRNA expression induced by PMA in NCI-H292 cells. 2) Betulin inhibited NF-κB activation stimulated by PMA. Suppression of inhibitory kappa B kinase (IKK) by betulin led to the inhibition of the phosphorylation and degradation of inhibitory kappa B alpha (IκBα), and the nuclear translocation of NF-κB p65. This, in turn, led to the down-regulation of MUC5AC glycoprotein production in NCI-H292 cells. These results suggest betulin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

스테로이드의 투여가 말초혈액 단핵구에서 IkB/NF-κB경로에 미치는 영향 (Effect of Steroid Administration Ex Vivo on the IκB/NF-κB Pathway in Human Peripheral Blood Monocytes)

  • 윤호일;이희석;이창훈;이춘택;김영환;한성구;심영수;유철규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권5호
    • /
    • pp.542-550
    • /
    • 2003
  • 배경 : 스테로이드는 그 뛰어난 염증억제 효과로 여러 만성 염증성질환의 치료제로 널리 쓰이고 있다. 최근 스테로이드의 염증억제의 기전이 I${\kappa}B$의 전사를 증가시키고, 활성화된 NF-${\kappa}B$를 억제시키는 것으로 밝혀졌다. 그러나 대부분의 연구가 세포주에 스테로이드 처치를 한 후 이루어진 것이어서 본 연구에서는 인체에 직접 스테로이드를 투여한 후, 스테로이드가 NF-${\kappa}B$ 에 미치는 영향을 알아보고자 하였다. 방법 : 건강한 자원자 5명을 대상으로 prednisolone을 0.5mg/kg/d의 용량으로 7일간 투여하였고 투여 전과 후에 각각 말초혈액 단핵구를 추출하여 이를 자극하지 않은 군(baseline), IL-$1{\beta}$, LPS, TNF로 자극한 군으로 나누어 $I{\kappa}B{\alpha}$에 대한 western blot을 시행하였다. 또한 투여 전후에 얻은 말초단핵구를 각각 LPS로 자극하고 EMSA를 시행하였다. 결과 : 5명중 3명에서는 $I{\kappa}B{\alpha}$의 기저발현에 차이가 없었으나, 나머지 2명에서는 스테로이드 투여 후 $I{\kappa}B{\alpha}$의 기저발현이 증가하였다. 5명 모두에서 스테로이드 투여 후에 외부자극에 의한 $I{\kappa}B{\alpha}$의 분해가 억제되었으며, EMSA로 NF-${\kappa}B$의 DNA 결합능이 감소하는 것을 확인하였다. 결론 : 스테로이드의 항염증효과는 $I{\kappa}B{\alpha}$의 기저발현의 증가, NF-${\kappa}B$ 의 DNA 결합능 감소, 그리고 자극 에 의한 $I{\kappa}B{\alpha}$ 분해의 억제에 의한다.

Mechanism of P-glycoprotein Expression in the SGC7901 Human Gastric Adenocarcinoma Cell Line Induced by Cyclooxygenase-2

  • Gu, Kang-Sheng;Chen, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2379-2383
    • /
    • 2012
  • Objective: To investigate possible signal pathway involvement in multi-drug resistant P-glycoprotein (P-gp) expression induced by cyclooxygenase-2 (COX-2) in a human gastric adenocarcinoma cell line stimulated with pacliaxel (TAX). Methods: The effects of TAX on SGC7901 cell growth with different doses was assessed by MTT assay, along with the effects of the COX-2 selective inhibitor NS-398 and the nuclear factor-KB (NF-KB) pathway inhibitor pyrrolidine dithiocarbamate (PDTC). Influence on COX-2, NF-KB p65 and P-gp expression was determined by Western blotting. Results: TAX, NS-398 and PDTC all reduced SGC7901 growth, with dosedependence. With increasing dose of TAX, the expression of COX-2, p65 and P-gp showed rising trends, this being reversed by NS-398. PDTC also caused decrease in expression of p65 and P-gp over time. Conclusion: COX-2 may induce the expression of P-gp in SGC7901 cell line via the NF-kappa B pathway with pacliaxel stimulation.

Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells

  • Cho, Eun Ju;Kim, Hyun Young;Lee, Ah Young
    • Nutrition Research and Practice
    • /
    • 제14권6호
    • /
    • pp.593-605
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Alzheimer's disease is common age-related neurodegenerative condition characterized by amyloid beta (Aβ) accumulation that leads cognitive impairment. In the present study, we investigated the protective effect of paeoniflorin (PF) against Aβ-induced neuroinflammation and the underlying mechanism in C6 glial cells. MATERIALS/METHODS: C6 glial cells were treated with PF and Aβ25-35, and cell viability, nitric oxide (NO) production, and pro-inflammatory cytokine release were measured. Furthermore, the mechanism underlying the effect of PF on inflammatory responses and Aβ degradation was determined by Western blot. RESULTS: Aβ25-35 significantly reduced cell viability, but this reduction was prevented by the pretreatment with PF. In addition, PF significantly inhibited Aβ25-35-induced NO production in C6 glial cells. The secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha was also significantly reduced by PF. Further mechanistic studies indicated that PF suppressed the production of these pro-inflammatory cytokines by regulating the nuclear factor-kappa B (NF-κB) pathway. The protein levels of inducible NO synthase and cyclooxygenase-2 were downregulated and phosphorylation of NF-κB was blocked by PF. However, PF elevated the protein expression of inhibitor kappa B-alpha and those of Aβ degrading enzymes, insulin degrading enzyme and neprilysin. CONCLUSIONS: These findings indicate that PF exerts protective effects against Aβ-mediated neuroinflammation by inhibiting NF-κB signaling, and these effects were associated with the enhanced activity of Aβ degradation enzymes.