• Title/Summary/Keyword: NF-${\kappa}B$/MAPK

Search Result 293, Processing Time 0.024 seconds

Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells

  • Wang, Dong-Chun;Zhang, Yan;Chen, Hai-Yan;Li, Xiao-Li;Qin, Li-Juan;Li, Ya-Juan;Zhang, Hong-Yi;Wang, Shuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3239-3245
    • /
    • 2012
  • Gliomas are a group of heterogeneous primary central nervous system tumors. Hyperthermia has proven to be a potential therapeutic tool for cancers in the clinic. However, the molecular mechanisms of hyperthermia remain unclear. The objective of this study was to investigate the effects of hyperthermia on the invasiveness in C6 glioma cells and related molecular pathways. Here our data show hyperthermia stimulated the release of tumor necrosis factor-alpha (TNF-${\alpha}$) and decreased C6 glioma cell migration and invasive capability at 30, 60, 120 and 180 min; with increased spontaneous apoptosis in C6 glioma cells at 120 min. We also found mitogen-activated protein kinase (P38 MAPK) protein expression to be increased and nuclear factor-kappa B (NF-${\kappa}B$) protein expression decreased. Based on the results, we conclude that hyperthermia alone reduced invasion of C6 glioma cells through stimulating TNF-${\alpha}$ signaling to activate apoptosis, enhancing P38 MAPK expression and inhibiting the NF-${\kappa}B$ pathway, a first report in C6 rat glioma cells.

Phellinus linteus Extract Exerts Anti-asthmatic Effects by Suppressing NF-${\kappa}B$ and p38 MAPK Activity in an OVA-induced Mouse Model of Asthma

  • Yan, Guang Hai;Choi, Yun Ho
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.107-115
    • /
    • 2014
  • Phellinus linteus has been used as a traditional herbal medicine in Asian countries and is known to have anti-tumor, immunomodulatory, anti-inflammatory, and anti-allergic activities. However, the protective effects of P. linteus against experimental asthma have not been fully investigated. The objective of this study was to determine whether P. linteus ethanol extract (PLE) suppresses inflammatory response in an OVA-induced asthma model. As expected, the oral administration of PLE significantly inhibited eosinophilic airway inflammation and airway hyperresponsiveness in OVA-challenged BALB/c mice. Supporting these data, the augmentation of Th2 cytokines (IL-4, IL-5, and IL-13), eotaxin, and adhesion molecules in lung tissues and bronchoalveolar lavage fluid after OVA inhalation was markedly attenuated by PLE. Furthermore, PLE reduced OVA-induced activation of NF-${\kappa}B$ and p38 MAPK in lung tissues. Therefore, our results suggest the potential of P. linteus as a therapeutic agent for asthma.

Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells

  • Lee, Gi Ho;Jin, Sun Woo;Kim, Se Jong;Pham, Thi Hoa;Choi, Jae Ho;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.93-101
    • /
    • 2019
  • Tetrabromobisphenol A (TBBPA), the most common industrial brominated flame retardant, acts as a cytotoxic, neurotoxic, and immunotoxicant, causing inflammation and tumors. However, the mechanism of TBBPA-induced matrix metalloproteinase-9 (MMP-9) expression in human breast cancer cells is not clear. In human breast cancer MCF-7 cells, treatment with TBBPA significantly induced the expression and promoter activity of MMP-9. Transient transfection with MMP-9 mutation promoter constructs verified that $NF-{\kappa}B$ and AP-1 response elements are responsible for the effects of TBBPA. Furthermore, TBBPA-induced MMP-9 expression was mediated by $NF-{\kappa}B$ and AP-1 transcription activation as a result of the phosphorylation of the Akt and MAPK signaling pathways. Moreover, TBBPA-induced activation of Akt/MAPK pathways and MMP-9 expression were attenuated by a specific NADPH oxidase inhibitor, and the ROS scavenger. These results suggest that TBBPA can induce cancer cell metastasis by releasing MMP-9 via ROS-dependent MAPK, and Akt pathways in MCF-7 cells.

Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB and JNK activation in RAW 264.7 macrophages

  • Kwon, Dong-Joo;Bae, Young-Soo;Ju, Sung Mi;Youn, Gi Soo;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.318-323
    • /
    • 2014
  • We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-${\kappa}B$ activation, such as IKK activation, $I{\kappa}B{\alpha}$ phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-${\kappa}B$ and JNK MAPK signaling cascades in macrophages.

Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

  • Kim, Hyung-Sook;Kim, Jee-Youn;Lee, Hong-Kyung;Kim, Moo-Sung;Lee, Sang-Rin;Kang, Jong-Soon;Kim, Hwan-Mook;Lee, Kyung-Ae;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • Background: Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods: The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-${\kappa}B$ by immunoblot. Results: Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\alpha}/{\beta}$, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-${\kappa}B$ p50/p65 in DCs. Conclusion: These results indicate that PUE induced DC maturation via MAPK and NF-${\kappa}B$ signaling pathways.

Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways

  • Kwon, Ii-Seul;Yim, Joung-Han;Lee, Hong-Kum;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-${\alpha}$ was significantly suppressed by the pre-treatment of lobaric acid ($0.1-10{\mu}g/ml$) for 2 h. Lobaric acid abrogated TNF-${\alpha}$-induced NF-${\kappa}B$ activity through preventing the degradation of $I{\kappa}B$ and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-${\alpha}$ receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-${\kappa}B$ signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.

Polysaccharide isolated from fermented barley extract activates macrophages via the MAPK and NF-κB pathways (보리발효추출물로부터 분리한 다당의 대식세포 활성화 및 신호 전달)

  • Kim, Han Wool;Jee, Hee Sook;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.555-563
    • /
    • 2018
  • Barley has nutritional benefits due to its high dietary fiber content; therefore, the intake of whole barley grains is recommended. However, barley is often consumed in the fermented form because of the improved texture and digestibility. The present study was designed to elucidate the intracellular signaling pathway for macrophage activation by the polysaccharide BF-CP from fermented barley. BF-CP is a neutral polysaccharide, composed of neutral sugars, including glucose (70.7%), xylose (11.4%), and arabinose (9.0%). BF-CP exhibited macrophage-stimulatory activity by inducing the production of interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide in RAW 264.7 macrophages. Further, BF-CP treatment strongly increased the IL-6 and $TNF-{\alpha}$ gene expression in a concentration-dependent manner. Signal transduction experiments using immunoblotting showed that BF-CP phosphorylated mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38, and nuclear factor $(NF)-{\kappa}B$, in RAW 264.7 cells in a concentration-dependent manner. These results suggest that BF-CP activates the macrophages via MAPK and $NF-{\kappa}B$ pathways, and also induces an increase in the production of cytokines.

Effect of Orostachys japonicus on Apoptosis and Autophagy in Human monocytic leukemia Cell line THP-1 via Inhibition of NF-κB and Phosphorylation of p38 MAPK (와송이 인간 백혈병 세포주 THP-1에서 NF-κB 활성 억제와 p38 활성을 통해 세포사멸과 자가포식에 미치는 영향)

  • Joo, Seonghee;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.35-50
    • /
    • 2019
  • Objectives: Orostachys japonicas (O. japonicus) has been known for its anti-tumor effect. In the present study, it was investigated whether O. japonicus EtOH extracts could induce apoptosis and autophagy which are part of the main mechanism related to anti-tumor effect in THP-1 cells. Methods: Cells were treated with various concentrations of O. japonicus EtOH extracts ($0-300{\mu}g/ml$) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay and apoptosis rate was examined by flow cytometry and ELISA assay. The mRNA expression of apoptosis-related genes (Bcl-2, Mcl-1, Survivin, Bax) and autophagy-related gene (mTOR) was evaluated using real-time PCR. The protein expression of Caspase-3, Akt, LC3 II, Beclin-1, Atg5, $NF-{\kappa}B$, p38, ERK was evaluated using western blot analysis. Results: O. japonicus EtOH extracts inhibited cell proliferation and apoptosis rate was increased in both flow cytometry and ELISA assay. Bcl-2, Mcl-1, Survivin (anti-apoptosis factors) mRNA expressions were decreased and Bax (pro-apoptosis factor) mRNA level was increased. mTOR mRNA expressions was decreased and LC3 II protein expressions was increased. Activation of $NF-{\kappa}B$ was decreased and phosphorylation of p38 was increased. Conclusion: O. japonicus is regarded to inhibit cell proliferation, to induce apoptosis and to regulate autophagy-related genes in THP-1 cells via $NF-{\kappa}B$ and p38 MAPK signaling pathway. This suggests O. japonicus could be an effective herb in treating acute myeloid leukemia.

LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-${\kappa}B$ Pathways

  • Lee, Seung Jin;Seo, Kyo Won;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • 5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS ($0{\sim}3{\mu}g/ml$) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-${\kappa}B$ were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-${\kappa}B$ were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-${\kappa}B$ pathways in monocytes.