• Title/Summary/Keyword: NF${\kappa}B$

Search Result 1,691, Processing Time 0.04 seconds

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

Anti-inflammatory Effect of Isaria sinclairii Glycosaminoglycan in an Adjuvant-treated Arthritis Rat Model

  • Ahn, Mi Young;Jee, Sang Duck;Hwang, Jae Sam;Yun, Eun Young;Ahn, Kwang Seok;Kim, Yeong Shik
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • The anti-inflammatory effects of glycosaminoglycan (GAG) derived from Isaria sinclairii (IS) and of IS extracts were investigated in a complete Freund's adjuvant (CFA)-treated chronic arthritis rat model. Groups of rats were treated orally with 30 mg/kg one of the following: [1] saline control, extracts of [2] water-IS, [3] methanol-IS, [4] butanol-IS, [5] ethyl acetate-IS, or [6] Indomethacin(R) as the positive control for a period of two weeks. The anti-paw edema effects of the individual extracts were in the following order: water-IS ex. > methanol ex. > butanol ex. > ethyl acetate ex. The water/methanol extract from I. sinclairii remarkably inhibited UV-mediated upregulation of NF-${\kappa}B$ activity in transfected HaCaT cells. GAG as a water-soluble alcohol precipitated fraction also produced a noticeable anti-edema effect. This GAG also inhibited the pro-inflammatory cytokine levels of prostaglandin $E_2$-stimulated lipopolysaccharide in LAW 264.7 cells, cytokine TNF-${\alpha}$ production in splenocytes, and atherogenesis cytokine levels of vascular endothelial growth factor (VEGF) production in HUVEC cells in a dose-dependent manner. In the histological analysis, the LV dorsal root ganglion, including the articular cartilage, and linked to the paw-treated IS GAG, was repaired against CFA-induced cartilage destruction. Combined treatment with Indomethacin(R) (5 mg/kg) and IS GAG (10 mg/kg) also more effectively inhibited CFA-induced paw edema at 3 hr, 24 hr, and 48 hr to levels comparable to the anti-inflammatory drug, indomethacin. Thus, the IS GAG described here holds great promise as an anti-inflammatory drug in the future.

D. candidum has in vitro anticancer effects in HCT-116 cancer cells and exerts in vivo anti-metastatic effects in mice

  • Zhao, Xin;Sun, Peng;Qian, Yu;Suo, Huayi
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.487-493
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: D. candidum is a traditional Chinese food or medicine widely used in Asia. There has been little research into the anticancer effects of D. candidum, particularly the effects in colon cancer cells. The aim of this study was to investigate the anticancer effects of D. candidum in vitro and in vivo. MATERIALS/METHODS: The in vitro anti-cancer effects on HCT-116 colon cancer cells and in vivo anti-metastatic effects of DCME (Dendrobium canidum methanolic extract) were examined using the experimental methods of MTT assay, DAPI staining, flow cytometry analysis, RT-PCR, and Western blot analysis. RESULTS: At a concentration of 1.0 mg/mL, DCME inhibited the growth of HCT-116 cells by 84%, which was higher than at concentrations of 0.5 and 0.25 mg/mL. Chromatin condensation and formation of apoptotic bodies were observed in cancer cells cultured with DCME as well. In addition, DCME induced significant apoptosis in cancer cells by upregulation of Bax, caspase 9, and caspase 3, and downregulation of Bcl-2. Expression of genes commonly associated with inflammation, NF-${\kappa}B$, iNOS, and COX-2, was significantly downregulated by DCME. DCME also exerted an anti-metastasis effect on cancer cells as demonstrated by decreased expression of MMP genes and increased expression of TIMPs, which was confirmed by the inhibition of induced tumor metastasis in colon 26-M3.1 cells in BALB/c mice. CONCLUSIONS: Our results demonstrated that D. candidum had a potent in vitro anti-cancer effect, induced apoptosis, exhibited anti-inflammatory activities, and exerted in vivo anti-metastatic effects.

Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model

  • Yeo, Hyeon Ji;Yeo, Eun Ji;Shin, Min Jea;Choi, Yeon Joo;Lee, Chi Hern;Kwon, Hyeok Yil;Kim, Dae Won;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.362-367
    • /
    • 2018
  • A major feature of type 1 diabetes mellitus (T1DM) is hyperglycemia and dysfunction of pancreatic ${\beta}$-cells. In a previous study, we have shown that Tat-DJ-1 protein inhibits pancreatic RINm5F ${\beta}$-cell death caused by oxidative stress. In this study, we examined effects of Tat-DJ-1 protein on streptozotocin (STZ)-induced diabetic mice. Wild type (WT) Tat-DJ-1 protein transduced into pancreas where it markedly inhibited pancreatic ${\beta}$-cell destruction and regulated levels of serum parameters including insulin, alkaline phosphatase (ALP), and free fatty acid (FFA) secretion. In addition, transduced WT Tat-DJ-1 protein significantly inhibited the activation of $NF-{\kappa}B$ and MAPK (ERK and p38) expression as well as expression of COX-2 and iNOS in STZ exposed pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 protein showed no protective effects. Collectively, our results indicate that WT Tat-DJ-1 protein can significantly ameliorate pancreatic tissues in STZ-induced diabetes in mice.

Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3 (Ginsenoside Rg3의 항암효능 연구의 진보)

  • Nam, Ki Yeul;Choi, Jae Eul;Hong, Se Chul;Pyo, Mi Kyung;Park, Jong Dae
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

Therapeutic Effects of Gaejigayonggolmoryo-tang on Dextran Sodium Sulfate-induced Ulcerative Colitis in Mice (궤양성 대장염 유발 생쥐에 투여한 계지가용골모려탕의 치료효과)

  • Kang, Amy;Lim, Seong-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.1021-1034
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of Gaejigayonggolmoryo-tang (GYT) on ulcerative colitis induced by dextran sodium sulfate (DSS) in mice. Methods: Colitis was induced by free drinking of 5% DSS in six-week-old male ICR mice. The experimental groups were the sample group, the control group, and the normal group. The sample group was treated with GYT for three days after being was given 5% DSS for five days. The control group was given water, instead of GYT, for three days after the five days of 5% DSS. The normal group was untreated (not given 5% DSS), for comparison purposes. Results: Cellular experiments showed that GYT inhibits the expression of the inflammatory enzymes COX-2 and iNOS, and the production of NO. Based on the primary cellular experiments, the effects of GYT on ulcerative colitis induced by DSS of mouse tissues were investigated. GYT reduced tissue damage and apoptosis by inhibiting the expression of the inflammatory enzymes $NF-{\kappa}B$ p65, COX-2, and iNOS. In the cellular experiment, GYT was more effective in inhibiting the expression of COX-2 than in inhibiting the expression of iNOS. GYT was evidently effective in tissues in inhibiting the expression of COX-2. Conclusions: Based on the results here, GYT may have therapeutic effects on ulcerative colitis induced by DSS. GYT is worthy of research and development as a COX-2 inhibitor and a potential drug for inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

The Mechanism of Lotus Root Extract (LRE) as Neuro-Protective Effect in Alzheimer Disease (AD) (연근(蓮根)의 신경 보호 효과 및 기전연구)

  • Hong, Seung-Chul;Lee, Chia-Hung;Kim, Sang-Heon;Lee, Jin-Hee;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.309-320
    • /
    • 2013
  • Objectives : There is a possibility LRE as remedy in Alzheimer disease (AD), but it's nerve protection effect and mechanism have to be elucidate. In this research, we applied LRE on $A{\beta}_{25-35}$ pre-treated SH-SY5Y cells, to find out the nerve protection effect and mechanism in AD cell model. Methods : We tried to confirm that effect by experimenting with 20, 50, and $100{\mu}g/ml$ concentration of LRE as a medicine. Next experiment, we assessed damage effect which induced $A{\beta}_{25-35}$, known to cause AD, on SH-SY5Y cell. In addition, cellular viability test is executed under $H_2O_2$ treatment condition in a SH-SY5Y cell. Results : 1. In $A{\beta}_{25-35}$ treated SH-SY5Y cell, LRE exhibited an anti-phosphorylation effect about tau protein, JNK, and IKB. 2. LRE prevent nerve cell apoptosis, which indued $A{\beta}_{25-35}$ and oxidative stress, modify JNK engaged synaptic structure and $NF{\kappa}B$ induced p75-neurotrophin receptor polymorphism. Conclusions : We found that LRE prevented oxidative stress-induced cellular destruction, for example, increased SOD activity of $A{\beta}_{25-35}$ treated SH-SY5Y cell and reduced toxicity of oxygen free radical. Consequently, the ingredients of LRE have a role as a catalyzer for $A{\beta}_{25-35}$ clearance and as scavenger for active oxygen free radical.

Inhibitory Effects of Lactobacillus plantarum Lipoteichoic Acid (LTA) on Staphylococcus aureus LTA-Induced Tumor Necrosis Factor-Alpha Production

  • Kim, Han-Geun;Lee, Seung-Yeon;Kim, Na-Ra;Ko, Mi-Yeon;Lee, Jung-Min;Yi, Tae-Hoo;Chung, Sung-Kyun;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1191-1196
    • /
    • 2008
  • Staphylococcus aureus is a common etiologic agent for Gram-positive sepsis, and its lipoteichoic acid (LTA) may be important in causing Gram-positive bacterial septic shock. Here, we demonstrate that highly purified LTA (pLTA) isolated from Lactobacillus plantarum inhibited S. aureus LTA (aLTA)-induced TNF-${\alpha}$ production in THP-1 cells. Whereas pLTA scarcely induced TNF-${\alpha}$ production, aLTA induced excessive TNF-${\alpha}$ production. Interestingly, aLTA-induced TNF-${\alpha}$ production was inhibited by pLTA pretreatment. Compared with pLTA, aLTA induced a strong signal transduction through the MyD88, NF-${\kappa}B$, and MAP kinases. This signaling, however, was reduced by a pLTA pretreatment, and resulted in the inhibition of aLTA-induced TNF-${\alpha}$ production. Whereas dealanylated LTAs, as well as native LTAs, contributed to TNF-${\alpha}$ induction or TNF-${\alpha}$ reduction, deacylated LTAs did not, indicating that the acyl chain of LTA played an important role in the LTA-mediated immune regulation. These results suggest that pLTA may act as an antagonist for aLTA, and that an antagonistic pLTA may be a useful agent for suppressing the septic shock caused by Gram-positive bacteria.

Modulatory Effects of 21 kinds of Medicinal Herbs Including Herba Pogostemi (Agastache rugosa) on Nitric Oxide Production in Macrophage Cell line RAW 264.7 cells (곽향(Agastache rugosa)을 포함한 21종의 한약재가 대식세포주 RAW 264.7 세포의 nitric oxide(NO) 생산 조절에 미치는 효과)

  • Kim, Seung-Hyun;Kang, Mi-Young;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • Aqueous extracts were prepared from 21 medicinal herbs including Herba Pogostemi (Agastache rugosa) to examine their modulatory effects on NO production in mouse macrophage cell line RAW264.7 cells. While almost all medicinal herb extracts failed to show marked scavenging activities to NO produced by LPS stimulation, only Herba Pogostemi showed a rather strong induction of NO production in RAW264.7 cells without stimulation with LPS. When we treated the cell with $200{\mu}M\;of\;N^G-monomethyl-L-arginine\;(N^GMMA)$, a NOS2 inhibitor, a significant reduction in NO production could be observed. Moreover, a treatment of $100{\mu}M$ pyrrolidine dithiocarbamate (PDTC) led to about a 79% reduction of NO production. These results demonstrated that the aqueous extract of Herba Pogostemi might provide a second signal for the expression of NOS2 in RAW264.7 cells, and suggested that Herba Pogostemi induces NO production through L-argininedependent pathway.

Antiallergic Effects of Fermented Ixeris sonchifolia and Its Constituents in Mice

  • Trinh, Hien-Trung;Bae, Eun-Ah;Hyun, Yang-Jin;Jang, Yoon-Ah;Yun, Hyung-Kwon;Hong, Seong-Sig;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2010
  • To evaluate the antiallergic effect of fermented Ixeris sonchifolia (IS, family Compositae), we prepared IS kimchi, isolated lactic acid bacteria (LAB) from it, fermented IS with these LAB, and investigated their antiallergic effects. IS kimchi inhibited the passive cutaneous anaphylaxis (PCA) reaction induced by an IgE-antigen complex as well as the scratching behavior induced by compound 48/80 or histamine more potently than IS. When IS was fermented with LAB isolated from IS kimchi, its antiallergic effects was also increased. Of LAB used for fermentation, Lactobacillus brevis more potently increased the antiallergic effects. Its main constituents, chlorogenic acid and luteolin, potently inhibited the PCA reaction induced by the IgE-antigen complex as well as the pruritis induced by compound 48/80 or histamine. These constituents inhibited the expression of pro inflammatory and allergic cytokines, TNF-$\alpha$. and IL-4, and transcription factor NF-${\kappa}B$ activation induced by the IgE-antigen complex in RBL-2H3 cells, as well as the degranulation of RBL-2H3 cells induced by the IgE-antigen complex. Luteolin more potently inhibited these allergic reactions than chlorogenic acid. These findings suggest that the antiallergic effect of IS can be increased by LAB fermentation, and the fermented IS might improve allergic reactions such as pruritus, anaphylaxis, and inflammation.