• 제목/요약/키워드: NF$\kappa$B

검색결과 1,671건 처리시간 0.024초

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

인삼의 항산화 작용 (Anti-oxidative properties of ginseng)

  • 김은혜;이동권
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2009
  • 우리 몸의 많은 기관을 비롯하여 장기들은 반복적이거나 혹은 급성 스트레스를 이겨내지 못하고 만성 스트레스로 이어질 경우 질병이 생기게 된다. 특히 강하고 지속적인 스트레스에 노출되면 뇌의 해마 수지상 세포(hippocampal dendrites)가 위축되거나 크기가 작아진다. 이렇게 스트레스로 인하여 증가된 글루코 코티코이드 호르몬은 뉴런 흥분제인 glutamate를 유도하거나 에너지 대사를 변형시켜 신경 독작용을 일으킨다. 이러한 연속적인 반응은 TNF-$\alpha$ convertase(TACE)를 활성화시켜 TNF-$\alpha$가 분비되도록 하여 전사 조절자인 NF-${\kappa}B$가 핵내로 전이되고 신경 손상을 일으키는 iNOS와 COX-2와 같은 효소를 유도한다. 이런 산화적 스트레스의 상위조절인자 TACE는 스트레스에 의한 여러 가지 염증성 질환 및 숙주방어에서 가장 중요한 조절자인 TNF-alpha를 수용체로부터 "유리(shedding)" 시키는 역할을 한다. 따라서 이런 신호 전달계를 자극하는 TACE의 발현 양과 이로 인한 지속적인 처리과정이 중요한 문제로 대두되고 있다. 특히 여러 스트레스 중에서 고정화 스트레스 및 신체적 구속 스트레스에 대한 연구는 뇌에서 산화물 생성을 증가시키지만 인삼이 뇌의 산화물질 생성에 어떤 영향을 미치는지 체계적인 연구가 진행된 바 없다. 따라서 염증을 매개하는 TNF-alpha의 생산에 중요한 역할을 하는 TACE의 발현 조절 및 TNF-alpha 신호전달을 연구함으로써 인삼의 항산화 기전을 분자 수준에서 규명할 수 있게 될 것으로 기대된다.

Tax is Involved in Up-regulation of HMGB1 Expression Levels by Interaction with C/EBP

  • Zhang, Chen-Guang;Wang, Hui;Niu, Zhi-Guo;Zhang, Jing-Jing;Yin, Ming-Mei;Gao, Zhi-Tao;Hu, Li-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.359-365
    • /
    • 2013
  • The high mobility group box 1 (HMGB1) protein is a multifunctional cytokine-like molecule that plays an important role in the pathogenesis of tumors. In this study, real-time polymerase chain reactions and Western blot assays indicated that HMGB1 transcriptional activity and protein level are increased in $Tax^+$-T cells (TaxP). To clarify the mechanisms, a series of HMGB1 deletion reporter plasmids (pHLuc1 to pHLuc6) were transfected into $Tax^-$-T cells (TaxN, Jurkat) and $Tax^+$-T cells (TaxP). We found that promoter activity in $Tax^+$-T cells to be higher than that in $Tax^-$-T cells, indicating a significant increase in pHLuc6. Bay11-7082 (NF-${\kappa}B$ inhibitor) treatment did not block the enhancing effect. Chromatin immunoprecipitation assays revealed that Tax was retained on a HMGB1 promoter fragment encompassing -1163 to -975. Bioinformatics analysis showed six characteristic cis-elements for CdxA, AP-1, AML-1a, USF, v-Myb, and C/EBP in the fragment in question. Mutation of cis-elements for C/EBP reduced significant HMGB1 promoter activity induced by Tax. These findings indicate that Tax enhances the expression of HMGB1 gene at the transcriptional level, possibly by interacting with C/EBP.

Mouse neutrophils express functional umami taste receptor T1R1/T1R3

  • Lee, NaHye;Jung, Young Su;Lee, Ha Young;Kang, NaNa;Park, Yoo Jung;Hwang, Jae Sam;Bahk, Young Yil;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.649-654
    • /
    • 2014
  • Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, which are ligands for the umami taste receptor, elicited not only ERK or p38 MAPK phosphorylation but also chemotactic migration. Moreover, addition of L-alanine or L-serine markedly reduced the production of several cytokines including $TNF-{\alpha}$ induced by lipopoly-saccharide (LPS) through inhibition of $NF-{\kappa}B$ activity or STAT3 phosphorylation in neutrophils. Our findings demonstrate that neutrophils express the umami taste receptor, through which tastants stimulate neutrophils, resulting in chemotactic migration, and attenuation of LPS-induced inflammatory response.

A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients

  • Alfadda, Assim A.;Masood, Afshan;Al-Naami, Mohammed Y.;Chaurand, Pierre;Benabdelkamel, Hicham
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.685-695
    • /
    • 2017
  • Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, $p{\leq}0.05$) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the $NF{\kappa}B$, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

Prominent IL-12 Production and Tumor Reduction in Athymic Nude Mice after Toxoplasma gondii Lysate Antigen Treatment

  • Pyo, Kyoung-Ho;Jung, Bong-Kwang;Xin, Chun-Feng;Lee, You-Won;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제52권6호
    • /
    • pp.605-612
    • /
    • 2014
  • Toxoplasma gondii is an intracellular protozoan parasite that causes a Th1 cellular immunity. Our previous study showed that T. gondii lysate antigen (TLA) treatment in S180 tumor-bearing mice resulted in tumor reduction by suppressing CD31 expression, a marker of angiogenesis. In the present study, to investigate tumor suppressive effect of TLA under the absence of T lymphocytes, athymic nude mice were compared with euthymic mice in the anti-tumorigenic effect triggered by TLA in CT26 tumors. According to the results, intratumorally injected TLA reduced tumor growth and TIMP-1 level, a metastatic marker, in both euthymic and athymic mice. TLA treatment led to a sharp increase in IL-12 expression in serum cytokine profiling of athymic mice, and increased MyD88 signals in macrophages derived from the bone marrow, implying the activation of innate immunity. The selective induction of IL-12 by TLA treatment had an anti-tumorigenic effect.

Rosmarinic Acid Down-Regulates the LPS-Induced Production of Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α (MIP-1α) via the MAPK Pathway in Bone-Marrow Derived Dendritic Cells

  • Kim, Hyung Keun;Lee, Jae Joon;Lee, Jun Sik;Park, Yeong-Min;Yoon, Taek Rim
    • Molecules and Cells
    • /
    • 제26권6호
    • /
    • pp.583-589
    • /
    • 2008
  • In the present study, we investigated whether rosmarinic acid, which has been suggested to exhibit anti-inflammatory properties, can suppress the expressions of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ ($MIP-1{\alpha}$) via the MAPK pathway in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) in the presence of GM-CSF and IL-4 in media. The effects of rosmarinic acid were investigated in BMDCs with respect to the following; cytotoxicity, surface molecule expression, dextran-FITC uptake, cell migration, chemokine gene expression, and the MAPK signaling pathway. Rosmarinic acid was found to significantly inhibit the expressions of CD80, CD86, MHC class I, and MHC class II in LPS-stimulated mature BMDCs, and rosmarinic acid-treated BMDCs were found to be highly efficient with regards to antigen capture via mannose receptor-mediated endocytosis. In addition, rosmarinic acid reduced cell migration by inducing the expression of a specific chemokine receptor on LPS-induced mature BMDCs. Rosmarinic acid also significantly reduced the expressions of MCP-1 and $MIP-1{\alpha}$ induced by LPS in BMDCs and inhibited LPS-induced activation of MAPK and the nuclear translocation of $NF-{\kappa}B$. These findings broaden current perspectives concerning our understanding of the immunopharmacological functions of rosmarinic acid, and have ramifications that concern the development of therapeutic drugs for the treatment of DC-related acute and chronic diseases.

Twist2 Regulates CD7 Expression and Galectin-1-Induced Apoptosis in Mature T-Cells

  • Koh, Han Seok;Lee, Changjin;Lee, Kwang Soo;Park, Eun Jung;Seong, Rho H.;Hong, Seokmann;Jeon, Sung Ho
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.553-558
    • /
    • 2009
  • In the periphery, a galectin-1 receptor, CD7, plays crucial roles in galectin-1-mediated apoptosis of activated T-cells as well as progression of T-lymphoma. Previously, we demonstrated that $NF-{\kappa}B$ downregulated CD7 gene expression through the p38 MAPK pathway in developing immature thymocytes. However, its regulatory pathway is not well understood in functional mature T-cells. Here, we show that CD7 expression was downregulated by Twist2 in Jurkat cells, a human acute T-cell lymphoma cell line, and in EL4 cells, a mature murine T-cell lymphoma cell line. Furthermore, ectopic expression of Twist2 in Jurkat cells reduced galectin-1-induced apoptosis. While full-length Twist2 decreased CD7 promoter activity, a C-terminal deletion form of Twist2 reversed its inhibition, suggesting an important role of the C-terminus in CD7 regulation. In addition, CD7 expression was enhanced by histone deacetylase inhibitors such as trichostatin A and sodium butyrate, which indicates that Twist2 might be one of candidate factors involved in histone deacetylation. Based on these results, we conclude that upregulation of Twist2 increases the resistance to galectin-1-mediated-apoptosis, which may have significant implications for the progression of some T-cells into tumors such as Sezary cells.

여의금황산(如意金黃散)이 여드름 유발균과 염증에 미치는 영향 (The Effects of Yeouigeumhwang-san on Anti-Inflammation and Anti- Propionibacterium acnes)

  • 유진곤;서형식
    • 한방안이비인후피부과학회지
    • /
    • 제20권2호통권33호
    • /
    • pp.77-88
    • /
    • 2007
  • Objectives : This experimental study was performed to investigate the effects of Yeouigeumhwang-san(YUGHS) on anti-inflammation and anti-Propionibacterium acnes. Methods : The cytotoxicity of YUGHS about viability of Raw 264.7 cell was tested by using a colorimetric tetrazolium assay(MTT assay). To investigate the anti-inflammatory effets of YUGHS on LPS-induced macrophage Raw 264.7 cell, we used ELISA kit and Western blots. Inhibitory effects of YUGHS on Propionibactrium acnes were investigated by using paper disk diffusion method. Results : 1. YUGHS has no cytotoxicity under 50 ${\mu}g/ml$ concentration but over 50 ${\mu}g/ml$ has a little cytotoxicity in Raw 264.7 cell. 2. Concentration of 100 ${\mu}g/ml$ YUGHS inhibited the production of NO in the Raw 264.7 cell stimulated with LPS. 3. All concentrations of YUGHS did not inhibit the production of $TNF-{\alpha}$ in the Raw 264.7 cell stimulated with LPS. 4. All concentrations of YUGHS significantly inhibited the production of $PGE_2$ in the Raw 264.7 cell stimulated with LPS. 5. YUGHS did not inhibit the expression of COX-2 but concentration of 50 ${\mu}g/ml$ YUGHS inhibited iNOS expression in the Raw 264.7 cell stimulated with LPS. 6. YUGHS has the effect of blocking $NF-{\kappa}B$ into nucleus in LPS-induced macrophage Raw 264.7 cell 7. YUGHS did not have the inhibitory effect of Propionibactrium acnes. Conclusions : These results indicate that Yeouigeumhwang-san has anti-inflammatory effets. If further study is performed, the use of Yeouigeumhwang-san will be valuable and benificial in the therapy of acnes.

  • PDF