• Title/Summary/Keyword: NEMA NU2-1994 phantom

Search Result 5, Processing Time 0.019 seconds

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF

Evaluation of Reasonable $^{18}F$-FDG Injected Dose for Maintaining the Image Quality in 3D WB PET/CT (PET/CT 검사에서 영상의 질을 유지하기 위한 적정한 $^{18}F$-FDG 투여량의 평가)

  • Moon, A-Reum;Lee, Hyuk;Kwak, In-Suk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2011
  • Purpose: $^{18}F$-FDG injected dose to the patient is quite different between the recommended dose from manufacturer and the actual dose applied to each of hospitals. injection of inappropriate $^{18}F$-FDG dose may not only increase the exposed dose to patients but also reduce the image quality. we thus evaluated the proper $^{18}F$-FDG injected dose to decrease the exposed dose to patients considering the image quality. Materials And Methods: NEMA Nu2-1994 phantom was filled with $^{18}F$-FDG increasing hot cylinder radioactivity concentration to 1, 3, 5, 7, 9 MBq/kg based on the ratio of 4:1 between the hot cylinder and background activity. after completing the transmission scan using ct, emission scan was acquired in 3D mode for 2 minutes 30 seconds/bed. ROI was set up on hot cylinder and background radioactivity region. after measuring $SUV_{max}$ those regions, then analyzed SNR at the points. clinical experiment has been conducted the object of patients who have came to smc from november 2009 to august 2010, 97 patients without having a hepatic lesions were selected. ROI was set up in the liver and thigh area. after measuring $SUV_{max}$, the image quality was compared following the injected dose. Results: in phantom study, as the injected radioactivity concentration per unit mass was 1, 3, 5, 7, 9 MBq/kg, $SUV_{max}$ was 23.1, 24.1, 24.3, 22.8, 23.6 and SNR was shown 0.48, 0.54, 0.56, 0.55, 0.55. according to increment of the injected dose, $SUV_{max}$ and SNR was increased under 5 MBq/kg but they were decreased over 7 MBq/kg. in case of clinical experiment, as increased the injected radioactivity concentration per unit mass was 4.72, 5.34, 6.16, 7.41, 8.68 MBq/kg, $SUV_{max}$ was 2.68, 2.67, 2.26, 1.88, 1.95 and SNR was shown 0.52, 0.53, 0.46, 0.46, 0.44. if the injected dose exceeds 5 MBq/kg, showed a decrease pattern as phantom study. Conclusion: increasing $^{18}F$-FDG injected dose considered patient's body weight improve image quality within a certain range. if it exceeds the range, it can be reduced image quality due to random and scatter coincidences. this study indicates that the optimal injected dose was 5 MBq/kg per unit mass the injected radioactivity concentration in 3d wb pet/ct.

  • PDF

The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning (18F-FDG PET/CT 검사에서 정량분석에 관한 CT와 MRI 조영제의 효과)

  • Cha, Sangyoung;Cho, Yonggwi;Lee, Yongki;Song, Jongnam;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • In this study, among various factors having influence on SUV, we intended to compare and analyze the change of SUV using CT(4 type) and MRI(3 type) contrast agents which are commercialized now. We used Discovery 690 PET/CT(GE) and NEMA NU2 - 1994 PET phantom as experimental equipment. We have conducted a study as follows; first, we filled distilled water to phantom about two-thirds and injected radioisotope(18F-FDG 37 MBq), contrast agent. Second, we mixed CT contrast agent with distilled water and MRI contrast agent with that water separately. And then, we stirred the fluid and filled distilled water fully not to make air bubble. In emission scan, we had 15minutes scanning time after 40 minutes mixing contrast agent with distilled water. In transmission scan, we used CT scanning and its measurement conditions were tube voltage 120 kVp, tube current 40 mA, rotation time 0.5 sec, slice thickness 3.27 mm, DFOV 30 cm. Analyzing results, we set up some ROIs in 10th, 15th, 20th, 25th, 30th slice and measured SUVmean, SUVmax. Consequently, all images mixed 3 types of MRI contrast agent with distilled water have high SUVmean as compared with pure FDG image but there was no statistical significance. In SUVmax, they have high score and there was statistical significance. And other 4 images mixed 4 types of CT contrast agent with distilled water have significance in both SUVmean and SUVmax. Attenuation correction in PET/CT has been executed through various methods to make high quality image. But we figured out that using CT and MRI contrast agents before PET/CT scanning could make distortion of image and decrease diagnostic value. In that reason, we have to sort out the priority of examination in hospital not to disturb other examination's results. Through this process, we will be able to give superior medical service to our customers.

Evaluation of Dosimetry and Image of Very Low Dose CT Attenuation Correction for Pediatric PET/CT: Phantom Study (팬텀을 이용한 소아 PET/CT 검사 시 감쇄보정 CT 선량과 영상 평가)

  • Bahn, Young-Kag;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • Purpose: To evaluate the dosimetry and image of very low does CT attenuation correction for phantom using pediatric PET/CT. Materials and methods: three PET / CT scanners (Discovery STe, BiographTruepoint 40, Discovery 600) as a child-size acrylic phantom and ion chamber dosimeter (Unfous Xi CT, Sweden) using a CT image acquisition parameters (10, 20, 40, 80, 100, 160 mA; 80, 100, 120, 140 kVp) by varying the depth dose and evaluate $CTDI_{vol}$ value. And each attenuation corrected PET/CT images used NEMA PET Phantom$^{TM}$ (NU2-1994) was evaluated by SUV. Results: Abdominal diagnosis CT dose in general pediatric (about 10 ages) parameter (100 kVp, 100 mA) than very low dose CT parameter (80 kVp, 10 mA) at the depth dose was reduced approximately 92%, $CTDI_{vol}$ was reduced to about 88%. Each CT attenuation corrected parameters PET images showed no change in the value of SUV. Conclusion: for pediatric patients, PET/CT scan can be obtained with very low dose attenuation correction CT (80 kVp, 10 mA), and such attenuation correction CT dose was reduced 100 fold than diagnosis CT dose. PET / CT scan used very low dose CT attenuation correction in pediatric patients can be helpful in reducing radiation dose.

  • PDF

Evaluation of Artifacts by Dental Metal Prostheses and Implants on PET/CT Images: Phantom and Clinical Studies (PET/CT 영상에서의 치과재료에 의한 인공물에 관한 연구)

  • Bahn, Young-Kag;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2010
  • Purpose: The X-ray attenuation coefficient based on CT images is used for attenuation correction in PET/CT. The polychromatic X-ray beam can introduce beam-hardening artifact on CT images. The aims of the study were to evaluate the effect of dental metal prostheses in phantom and patients on apparent tracer activity measured with PET/CT when using CT attenuation correction. Materials and Methods: 40 normal patients (mean age $54{\pm}12$) was scanned between Jan and Feb 2010. NEMA(National Electrical Manufactures Association) PET $Phantom^{TM}$ (NU2-1994) was filled with $^{18}F$-FDG injected into the water that insert implant and metal prostheses dental cast. Region of interest were drawn in non-artifact region, bright steak artifact region and dark streak artifact region on the same transaxial CT and PET slices. Patients and phantom with dental metal prostheses and dental implant were evaluated the change rate of CT Number and $SUV_{mean}$ in PET/CT. A paired t-test was performed to compare the ratio and the difference of the calculated values. Results: In patients with dental metal prostheses, $SUV_{mean}$ was reduced 19.64% (p<0.05) in the non-steak artifact region than the brightstreak artifact region whereas was increased 90.1% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental metal prostheses, $SUV_{mean}$ was reduced 18.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 18.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In patients with dental implant, $SUV_{mean}$ was increased 19.1% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 96.62% (p>0.05) in the non-steak artifact region than the dark streak artifact region. In phantom with dental implant, $SUV_{mean}$ was increased 14.4% (p<0.05) in the non-steak artifact region than the bright streak artifact region whereas was increased 7.0% (p>0.05) in the non-steak artifact region than the dark streak artifact region. Conclusion: When CT is used for attenuation correction in patients with dental metal prostheses, 19.1% reduced $SUV_{mean}$ is anticipated in the dark streak artifact region on CT images. The dark streak artifacts of CT by dental metal prostheses may cause false negative finding in PET/CT. We recommend that the non-attenuation corrected PET images also be evaluated for clinical use.

  • PDF