• Title/Summary/Keyword: NBU

Search Result 26, Processing Time 0.022 seconds

Testing Whether New Is Better Than Used of Specified Age Using Moments Inequalities

  • Ahmad, Ibrahim A.;Al-Wasel, Ibrahim A.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • The class of “new better than used of a specified age” is a large and practical class of life distributions. Its properties, applicability, and testing was discussed by Hollander, Park and Proschan (1986). Their test, while remaining the yardstick for this class, suffers from weak efficiency and weak power, especially for specified ages below the average age. Thus, it is beneficial to have an alternative testing procedure that would work better for early ages and still work well for later ages. This is exactly the subject of the current note. The test developed here is also simpler than that of Hollander, et. al. (1986).

  • PDF

A Goodness of Fit Approach to Major Lifetesting Problems

  • Ahmad, Ibrahim A.;Alwasel, Ibrahim A.;Mugdadi, A.R.
    • International Journal of Reliability and Applications
    • /
    • v.2 no.2
    • /
    • pp.81-97
    • /
    • 2001
  • Lifetesting problems have been the subject of investigations for over three decades. Most suggested approaches are markedly different from those used in the related but wider goodness of fit problems. In the current investigation, it is demonstrated that a goodness of fit approach is possible in many lifetesting problems and that It results in simpler procedures that are asymptotically equivalent or better than standard ones. They may also have superior finite sample behavior. Several perennial classes are addressed here. The class of increasing failure rate (IFR) and the class of new better than used (NBU) are addressed first. In addition, we provide testing for a newer and practical class of new better than used in convex ordering (NBUC) due to Cao and Wang (1991). Other classes can be developed similarly and this point is illustrated with the classes of new better than used in expectation (NBUE) and harmonic new better than used in expectation (HNBUE).

  • PDF

A Study on Test for New Better than Used of an unknown specified age ($NBU-t_0$ Class에 대한 검정법 연구)

  • 김환중
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.2
    • /
    • pp.37-45
    • /
    • 2001
  • A survival variable is a non-negative random variable X with distribution function F(t) satisfying F(0) : 0 and a survival function F(t): 1-F(t). This variable is said to be New Better than Used of specified age t$_{0}$ if F(x+ t$_{0}$)$\leq$F(x).F(t$_{0}$) for all x$\geq$0 and a fixed t$_{0}$. We propose the test for H$_{0}$ : F(x+t$_{0}$)=F(x).F(t$_{0}$) for all x$\geq$0 against H$_1$: F(x+t$_{0}$) $\leq$ F(x).F(t$_{0}$) for all x$\geq$0 when the specified age to is unknown but can be estimated from the data when t$_{0}$$_{p}$, the pth percentile of F. This test statistic, which is based on the normalized spacings between the ordered observations, is readily applied in the case of small sample. Also, our test is more simple than Ahmad's test (1998). Finally, the performance of our test is presented.our test is presented.

  • PDF

Stochastic Properties of Life Distribution with Increasing Tail Failure Rate and Nonparametric Testing Procedure

  • Lim, Jae-Hak;Park, Dong Ho
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the tail behavior of the life distribution which exhibits an increasing failure rate or other positive aging effects after a certain time point. Methods: We characterize the tail behavior of the life distribution with regard to certain reliability measures such as failure rate, mean residual life and reliability function and derive several stochastic properties regarding such life distributions. Also, utilizing an L-statistic and its asymptotic normality, we propose new nonparametric testing procedures which verify if the life distribution has an increasing tail failure rate. Results: We propose the IFR-Tail (Increasing Failure Rate in Tail), DMRL-Tail (Decreasing Mean Residual Life in Tail) and NBU-Tail (New Better than Used in Tail) classes, all of which represent the tail behavior of the life distribution. And we discuss some stochastic properties of these proposed classes. Also, we develop a new nonparametric test procedure for detecting the IFR-Tail class and discuss its relative efficiency to explore the power of the test. Conclusion: The results of our research could be utilized in the study of wide range of applications including the maintenance and warranty policy of the second-hand system.

The Effect on the Immune System in the Human Body Due to COVID-19: An Insight on Traditional to Modern Approach as a Preventive Measure

  • Sutradhar, Jugal;Sarkar, Bapi Ray
    • Journal of Pharmacopuncture
    • /
    • v.24 no.4
    • /
    • pp.165-172
    • /
    • 2021
  • The COVID-19, the most infectious pandemic disease arising due to SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has caused huge issues globally. In this review, we discuss the impact of COVID-19 on the immune system of the human body and the protective mechanisms of the host immune system opposing viral infections. Here, we summarize the effect of the pandemic of the novel coronavirus disease on the immune system such as sleep and Behavioral Immune System (BIS) together with consideration of researcher's observation points of view. We draw particular attention to recent up-to-date reports concerning COVID-19 drugs as well as information about the landscape document for COVID-19 vaccines released by WHO (World Health Organization), and some adverse events of COVID-19 vaccination. Additionally, can take part in the preventive appraise in opposition within this pandemic severe COVID-19 infections disease may affect some outcome in physical exercise, physical movement, healthy diets, and good nutrition are significant for supporting the immune systems and summarize AYUSH (Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy) Indian medicinal systems guidelines for immunity boosting procedures during COVID-19 pandemic.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF