• Title/Summary/Keyword: NBR/PP blend

Search Result 2, Processing Time 0.015 seconds

Effect of Zinc Dimethacrylate on Mechanical Properties of Dynamically Vulcanized Polypropylene(PP) and Nitrile rubber(NBR) Blends (메타크릴산 아연염의 첨가가 폴리프로필렌-니트릴고무 블렌드의 동적가교 및 기계적물성에 미치는 영향)

  • Lee, Jung-Won;Joo, Hyun-Seok;Kong, Shin-Choon;Chong, Young-Wook
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.245-251
    • /
    • 2006
  • Thermoplastic elastomer was prepared from dynamical vulcanization of isotactic polypropylene(iPP)/nitrile rubber blend (NBR/iPP=70/30 wt/wt) in an internal mixer using dicumyl peroxide (DCP) as a curing agent and zinc dimethacrylate (ZDMA) as a coagent. There was a great improvement in tensile and tear strength, elongation-at-break and lower tension set when ZDMA was incorporated into the blend, which is supposed to be due to the increase in crosslink density or the rubber phase and the reduction in size of the rubber particles. It was revealed that the dynamically vulcanized blend exhibited good reprocessibility, indicating its thermoplastic nature.

Effect of Chlorinated Polyethylene(cPE) on Morphology and Mechanical Properties of Polypropylene(PP) and Nitrile Rubber(NBR) Blends (염소화폴리에틸렌의 첨가가 폴리프로필렌-니트릴 고무 블렌드의 모폴로지 및 기계적물성에 미치는 영향)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2005
  • Effect of chlorinated polyethylene(cPE) on the morphology and mechanical properties of isotactic polypropylene(iPP) and nitrile rubber(NBR) blends was investigated. It was found that incorporation of a small amounts of cPE leads to a decrease in domain size of the dispersed phase, and uniform distribution of the dispersed phase in the blends. The PP/NBR/cPE ternary blends showed an improved tensile and tear strength as well as elongation-at-break as compared to binary PP/NBR blends. From the results on morphology and mechanical properties, optimum amount of the cPE is 5-10 wt% with repect to NBR in the blend.