• 제목/요약/키워드: NBBS

검색결과 3건 처리시간 0.015초

마약류 및 산업환경화학물질에 의한 GFAP의 신경독성표지물질화에 관한 유용성 (The Neurotoxicological Alterations Induced by Narcotic Drugs and Industrial Chemicals in the Rat are Associated with Quantitative Changes in Glial Fibrillary Acidic Protein)

  • 조대현;정용;김준규;이봉훈;황세진;이원용;김정구;조태순;김진석;문화회
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.315-327
    • /
    • 1995
  • Diverse neurotoxic insults result in proliferation and hypertrophy of astrocytes, a subtype of glia in central nervous system. The hallmark of this response, often terms "reactive gliosis", is the enhanced expression of the major intermediate filament protein of castrocytes, glial fibrillary acidic protein (GFAP). These changes in the astrocytes suggest that GFAP may be a useful biochemical indicator of neurotoxicity. To investigate this possibility, we administered intra-peritoneally prototype nerotoxicants, metharnphetamine (MAP, 5 mg/kg), cocaine (30 mg/kg), N-buthyl benzenesulfonamide (NBBS, 300 mg/kg) and trimethytin (TMT, 8 mg/kg) to Wistar Rats and then assessed the effects of these agents on content of GFAP, which were determined by Sandwish ELISA and evaluated with neurotoxic symptoms, and quantitative changes of imrnunoreactivity of GFAP by light microscopic image analysis in specific regions. We found that assay of GFAP revealed time- and region-dependant patterns of neurotoxicity. The GFAP immunoreactivity of rat brain was increased in substantia nigra and hippocampus by MAP, NBBS and TMT; in roedial septal nucleus and nucleus accurnbens, it was also increased by RrBBS. Sandwich ELISA showed that GFAP levels of cerebrum in all groups on days 3 and 7 and that of brainstem(including cerebellum) in MAP, NBBS groups on day 1 and 3 were increased. A review of the background, design and results of these experiments are presented in this paper. Our findings indicate that GFAP is a sensitive and specific biomarker of neurotoxicity.otoxicity.

  • PDF

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.