• Title/Summary/Keyword: NB

Search Result 3,603, Processing Time 0.033 seconds

The Effects of Nitrogen on Microstructure and Magnetic Properties of Nanocrystalline Fe-Nb-B-N Thin Films (나노결정구조 Fe-Nb-B-N 박막의 미세구조 및 자기적 특성)

  • 박진영;서수정;노태환;김광윤;김종열;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.250-257
    • /
    • 1997
  • The microstructure and magnetic properties of Fe-Nb-B-N thin film alloys, which produced by rf magnetron sputtering method in $Ar+N_2$ mixed gas atmosphere, were investigated. The $Fe_{70}Nb_{14}B_{11}N_5$ films, annealed at 59$0^{\circ}C$, exhibit soft magnetic properties: $4{\pi}M_s=16.5kG$ , $H_c=0.13Oe$ and ${\mu}_{eff}$ (1~10 MHz)=5, 000. The frequency stability of the Fe-Nb-B-N films has also been found to be good up to 10 MHz. The Fe-Nb-B-N thin film alloys annealed at 59$0^{\circ}C$ consist of three phase; fine crystalline $\alpha$-Fe phase with grain size of about 5~10 nm, Nb-B rich amorphous phase and Nb-nitride precipitates with the size of less than 3 nm. Annealed Fe-Nb-B films have two phases; $\alpha$-Fe grains with the size of about 10 nm and Nb-B rich amorphous phase. The addition of N decreased $\alpha$-Fe grain size due to the precipitation of NbN. The good magnetic properties of the Fe-Nb-B-N film alloys are due to fine $\alpha$-Fe grains resulting from the precipitation of NbN.

  • PDF

Microstructure and Mechanical Properties of $Ti_3Al-Nb$ Alloys and TiB(Ti-25Al-11Nb) Metal Matrix Composite Fabricated by Spark Plasma Sintering Process (방전플라즈마 소결법으로 제작된 $Ti_3Al-Nb$ 합금 및 TiB/(Ti-25Al-11Nb) 금속기 복합재료의 미세조직과 기계적 성질)

  • 이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.124-133
    • /
    • 2003
  • Ti-25Al-xNb (x=0, 3, 7, 11, 13 at. %) alloys and 18 vol. % TiB/(Ti-25Al-11Nb) metal matrix composite were fabricated by spark plasma sintering process at 900-120$0^{\circ}C$. Microstructural characteristics of the sintered bodies were identified by SEM, EDX analysis, X-ray diffraction, and differential scanning calorimeterric method. $Ti_3Al$ alloy was consisted of equiaxed $\alpha_2$ phase. $Ti_3Al-Nb$ alloys and the matix of TiB/(Ti-25Al-11Nb) metal matrix composite had the morphology that O phase was precipitated at the grain boundary of $\alpha_2$phase. Volume fraction of O phase and hardness were depended on the concentration of Nb in $Ti_3Al-Nb$ alloy, Rule of mixing could be applied to hardness and Young's modulus of 18 vol. % TiB/(Ti-25Al-11Nb) metal matrix composite.

Effect of Non-lattice Oxygen Concentration and Micro-structure on Resistance Switching Characteristics in Nb-doped HfO2 by DC Magnetron Co-Sputtering

  • Lee, Gyu-Min;Kim, Jong-Gi;Kim, Yeong-Jae;Kim, Jong-Il;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.378.1-378.1
    • /
    • 2014
  • In this study, we investigated that the resistance switching characteristics of Nb-doped HfO2 films with increasing Nb doping concentration. The Nb-doped HfO2 based ReRAM devices with a TiN/Nb-doped HfO2/Pt/Ti/SiO2 were fabricated on Si substrates. The Nb-doped HfO2 films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16sccm, O2: 24sccm). Microstructure of Nb-doped HfO2 films and atomic concentration were investigated by XRD, TEM, and XPS, respectively. The Nb-doped HfO2 films showed set/reset resistance switching behavior at various Nb doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased in doped HfO2 films. However, the switching properties of Nb-doped HfO2 were changed above the specific doping concentration of Nb. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen and micro-structure of Nb-doped HfO2.

  • PDF

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

Phase Formation Behavior of Mechanical Alloyed Al-25at% Nb Powder Mixtures (기계적 합금화에 의한 Al-25at%Nb 혼합분말의 상형성 거동)

  • 이상호;김동관;이진형
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.997-1004
    • /
    • 1995
  • Intermetallic compound NbAl₃and amorphous phases were synthesized by mechanical alloying of elemental powder mixtures of niobium and aluminum. The composition of the powder mixtures was Nb-45wt%Al(75at%Al). The mechanical alloying was performed with a high energy SPEX 8000 mixer/mill up to 72 hrs. The resulting powders were analyzed by XRD, DTA, SEM and TEM. The mechanically alloyed powders exhibited lamellar structures in the early stage. And the elements of Nb and Al were homogeneously distributed over the Powder when a steady state was reached. An intermetallic compound, NbAl₃, was formed by mechanical alloying for 4 hrs. The mechanically alloyed powders exhibited a large exotherm around 600℃, corresponding to formation of stable NbAl₃and stress relief.

  • PDF

A Study on the Carbothermic Reduction of Nb-Oxide and the refining by Ar/Ar-$H_2$ plasma and Hydrogen solubility of Nb metal (Ar/Ar-$H_2$ 플라즈마에 의한 Nb금속제조와 Nb금속의 수소용해)

  • Jeong, Yong-Seok;Hong, Jin-Seok;Kim, Mun-Cheol;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.565-574
    • /
    • 1993
  • The Ar/Ar- $H_{2}$ plasma method Lvas applied to reduce and refine high purity Nb metal. Inaddition, the reaction between molten Nb metal and hydrogen were also analyzed in the Ar-(20%)$H_{2}$plasma. The metallic Nb of 99.5wt% was obtained at the ratio of $C/Nb_{2}O_{5}$=5.00 in the Ar plasma reductionand the $O_2$ loss from the thermal decomposition of niobium oxides did not take place. In the Ar-(20%)Hi plasma the metallic Nb of 99.8wt% was produced at the ratio of $C/Nb_{2}O_{5}$=4.80. It was observedthat a major reaction of the deoxidation was the reaction with H, Hi, and a deoxidation by the evaporationof $NbO_x$ did not occur but a mass loss of Nb did by a "splash" effect. The deoxidation reaction rateobeyed the 1st order reaction kinetics and the reaction rate constant(k') of deoxidation was $7.8 \times 10_{-7}$(m/sec).The solubility of hydrogen in Nb metal was 60ppm and it was larger than the solubility of molecularstate hydrogen by 40ppm in the Ar-(20%)$H_{2}$ plasma method. A saturation was within 60sec anda hydrogen content was reduced below lOppm by a Ar plasma re-treatment.by a Ar plasma re-treatment.

  • PDF

A study on the lattice defects in $LiNbO_3$ single crystal by crystal by $OH^-$ absorption band ($OH^-$ 흡수밴드에 의한 $LiNbO_3$ 단결정의 격자결함에 관한 연구)

  • 조용석;강길영;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.401-406
    • /
    • 1998
  • For the applications in optical waveguides and devices, LiNbO_3$ single crystals need to overcome the weakness of optical damage due to the inhomogeneities of laser-induced refractive index. This problem can be solved by doping of Mg in LiNbO_3$ and proton exchange of LiNbO_3$. In this study, to understand the mechanism of optical damage resistance in LiNbO_3$, the changes of lattice defects in LiNbO_3$ caused by MgO doping and acid treatment were observed indirectly by $OH^-$ absorption bands using a FT-IR spectrophotometer. The effect of lattice defects on temperature, heat-treatment and polishing were also investigated. It is shown that MgO doping increases optical damage resistance by generating the defects of $Mg_{Nb}^{2+}$ in the lattice of LiNbO_3$, and that proton exchange by implantation of $H^+$ ion in the hexagonally closest packed oxygen layers on the surface of LiNbO_3$, makes lattice defects, which diffuse into the crystal after heat-treatment above $400^{\circ}C$.

  • PDF

Behavior of Intermetallic Compound Formation in Al-25Nb system and (Al,X)-25Nb (X= Cr, Cu, Fe, Mn) systems by Mechanical Alloying Method (A1-25Nb계와 (A1,X)-25Nb계 (X = Cr, Cu, Fe, Mn)의 기계적 합금화에 의한 금속간 화합물의 형성 거동에 관한 연구)

  • Choi, Jae-Woong;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.733-739
    • /
    • 2001
  • In Al-25Nb binary system, it was observed only formation of $D0_{22}$ $Al_3Nb$ intermetallic compound after 5hr milling but it was not observed formation of meta stable phase like L1$_2$ phase. In this state, $D0_{22}$ $Al_3Nb$ fabricated had nano sized grain of approximately 20nm. Ternary systems, transition metals such as Cr, Cu, Fe, Mn were added 6~12at.% as substitution of Al, showed formation of $D0_{22}$ $Al_3Nb$ like Al-25Nb binary system. In Al- l2Cu-25Nb system, it was observed that broad XRD pattern like amorphization of Al and not observed formation of $D0_{22}$ $Al_3Nb$ after 5hr milling. But there was mixed phase of a lot of amorphous Al and little $D0_{22}$ $Al_3Nb$ through TEM. In the states of unalloyed, 5~7hr milling time, those showed exothermic reaction at 35$0^{\circ}C$, which was formation of $D0_{22}$ $Al_3Nb$ like Al-25Nb binary system. With increasing milling time to 10hr, $D0_{22}$ $Al_3Nb$ was transformed to mixed phase of amorphous and nanocryatlline, having approximately 10nm grain but the meta stable $Al_3Nb$ was not fabricated by adding transition metals.

  • PDF

Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics ($1-xBiNbO_4-xZnNb_2O_6$ 세라믹스의 저온소결 및 유전특성)

  • Kim, Yun-Han;Yoon, Sang-Ok;Kim, Kwan-Soo;Lee, Joo-Sik;Kim, Kyung-Mi;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.260-260
    • /
    • 2007
  • Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics (x=0.3, 0.5, and 0.7) with 10 wt% zinc borosilicate (ZBS) glass was investigated as a function of the substitution of $ZnNb_2O_6$ with a view to applying this system to LTCC technology. The all composition addition of 10 wt% ZBS glass ensured a successful sintering below $900^{\circ}C$. The the amount of $ZnNb_2O_6$ on $ZnNb_2O_6$ ceramics increased the $Q{\times}f$ values, but it decreased the sinterability and dielectric constant due to the higher $Q{\times}f$ value and sintering temperature of $ZnNb_2O_6$ than that of $ZnNb_2O_6$ ceramics. The increase of $ZnNb_2O_6$ content from 0.3 to 0.7 in the $1-xBiNbO_4-xZnNb_2O_6$ ceramics with 10 wt% ZBS glass sintered at $900^{\circ}C$ demonstrated 30~20 in the dielectric constant (${\varepsilon}_r$), 3,500~4,500 GHz in the $Q{\times}f$ value.

  • PDF

Low-temperature sintering and dielectric properties of the (1-x)$BiNbO_4-(x)ZnNb_2O_6$ ceramics ((1-x)$BiNbO_4-(x)ZnNb_2O_6$ 세라믹스의 저온 소결 및 유전 특성)

  • Kim, Yun-Han;Yoon, Sang-Ok;Kim, Shin;Kim, Kwan-Soo;Kim, Kyung-Joo;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.284-284
    • /
    • 2007
  • In this study, the microwave dielectric property variations of (1-x)$BiNbO_4-(x)ZnNb_2O_6$ composites (x=0.3, 0.5 and 0.7) with 10wt% zinc borosilicate(ZBS) glass was investigated as a function of the substitution of $ZnNb_2O_6$ with a view to applying thes system to LTCC technology. The all composition addition of 10wt% ZBS glass ensured a successful sintering below $900^{\circ}C$. In addition, a small amount of $Bi_2SiO_5$ as the secondary phase was observed in the all composition. The substitution of $ZnNb_2O_6$ on the $BiNbO_4$ composites increased the $Q{\times}f$ values, but it decreased the sinterability and dielectric constant due to the high sintering temperature and low dielectric constant of $ZnNb_2O_6\;than\;BiNbO_4$ ceramics. The increasing of $ZnNb_2O_6$ content from 0.3 to 0.7 in the (1-x)$BiNbO_4-(x)ZnNb_2O_6$ composites with 10wt% ZBS glass sintered at $900^{\circ}C$ demonstrated 28.1~15.6 in the dielectric constant$({\varepsilon}_r)$, 5,500~8,700GHz in the $Q{\times}f$ value.

  • PDF