• Title/Summary/Keyword: NATM method

Search Result 152, Processing Time 0.024 seconds

Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite (풍화 화강암 지반에 건설된 NATM터널에서의 내공변위 연구)

  • Shin, Sang-Sik;Kim, Hak Joon;Bae, Gyu Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.515-526
    • /
    • 2015
  • Predicting and measuring tunnel convergence is very crucial for estimating tunnel stability and economical construction of NATM tunnels. The method to estimate the tunnel convergence that occurs before and after construction is proposed based on literature reviews. The total displacement occurring related to tunnel construction is determined to be about 2.5 times that of measured displacements. The results of displacement measurements at two tunnels constructed with similar rock types are examined for the investigation of factors affecting the tunnel convergence. The average convergence of Gyungju A Tunnel is about 6.7 times bigger than that of Daejeon B Tunnel. The possible causes of the large convergence in Gyungju A Tunnel are suggested. In order to predict the convergence of tunnels, careful investigation of the geological structures in the ground surface and the influence of external conditions as well as careful face mapping of the tunnel face should be conducted.

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.

Numerical Analysis for Carinthian Cut and Cover Tunnelling Method (카린시안 터널 공법의 기준 제안을 위한 수치 해석적 연구 - 국내 고속철도 복선터널 표준 단면을 기준으로 -)

  • Roh, Byoung-Kuk;Baek, Seung-Kyu;Cha, Min-Woong
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Carinthian cut and cover tunnelling method which combines cut & cover and NATM tunnel excavation method has increased the interest. Design and construction of arch concrete have been increased, but there is no applicable standards for arch concrete. Therefore, in this study numerical analysis was performed to propose standards for the Carinthian tunnelling method considering a variety of conditions such as ground conditions, tunnel overburden thickness, thickness of backfill, and overburden surface slope angle changes, linear regression equations derived to classify and organize a rational, economical, and safe Carinthian cut and cover tunneling method based proposed.

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

Application of New Type Accelerator for High Quality Shotcrete (고품질 숏크리트 개발을 위한 새로운 급결제 적용)

  • Park, Hae-Geun;Lee, Myeong-Sub;Kim, Jea-Kwon;Jung, Myung-Keun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2002
  • From the early 1980's, the New Austrian Tunnelling Method (NATM) has been developed as one of the standard tunnelling methods in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate (waterglass) accelerator was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength, and flexural toughness were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.

Evaluation of Non-linear FEM Tunnel Analysis by using Hoek-Brown반s Insitu Rock Model (Hoek-Brown 암반모델을 이용한 비선형 유한요소 터널해석 및 평가)

  • Lee, Bong-Yeol;Kim, Gwang-Jin;Kim, Hak-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.235-246
    • /
    • 1994
  • At pre-construction design stage, most of the design data are based on the site investigation results or property estimation which often does not provide satisfactory output for the tunnel analysis. Nonlinear FEM tunnel analysis was cariied out by Hoek-Brown model which is principly semi-empirical design method based on insitu rock descriptions, rock test results as well as field measurement data. The results of the analytical methods from Hoek-Brown model and Mohr-Coulomb model are compared with the sige measurement data from two-NATM tunnel construction sites. It was found that the Hoek-Brown model can be satisfactorily adopted as a feed back analysis technique in order to examin the safety of NATM tunnel at any construction stage.

  • PDF

An Experimental Study on Performance of neater Stops at Construction joints in Tunnel (터널 시공이음부에서의 방수재 역할에 대한 실험연구)

  • 백송훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.217-223
    • /
    • 1999
  • Mostly, water leakage took place in construction joints. In case of cable tunnels constructed by open-cut method, waterstops have been used to prevent the water leakage. But, we haven't any experience to install the waterstops in NATM cable tunnels. So, it is necessary to develope the waterstops and test the performance of it in laboratory. We manufactured cable tunnel lining quarter scale model by pouring concrete, and installed the waterstops. After filling the inside of concrete lining about two-third with water, we put the air pressure on the water, In addition, it is also carried out water leakage test for concrete lining model without waterstops. As a result, we confirmed the performance of waterstops and its adaptability. It is also tested that the performance of rubber gaskets used in concrete segments of Shield tunnelling. In addition, we determined the allowable infiltration rate for cable tunnel with non-drainage system.

  • PDF

A Case of Blasting Vibration Reduction in the Tunnel Construction under a Residential Area (주거지역 터널공사에서의 발파진동 저감사례)

  • Kang, Jin-Ook;Lee, Hyun-Koo;Lee, Myong-Choul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.175-180
    • /
    • 2007
  • This paper presents a case study on blasting vibration reduction in NATM(New Australian Tunnelling Method) tunnel construction carried out under a congested residential area. In NATM tunnel constructions, blasting is an essential process, thus vibration phenomenon is inevitable. Therefore, the vibration reduction was tried to avoid expected complaints from the public living in the area. Test blastings were performed to get the constants for an estimation formula of vibration velocity. Then the influence area was approximated using the estimation formula, and construction methods for the vibration reduction were sought based on the results.

  • PDF

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF