• Title/Summary/Keyword: NATM터널

Search Result 248, Processing Time 0.035 seconds

Estimation of Cycle Time for Construction Process of NATM Tunnel by using RFID Technology (RFID기술을 이용한 NATM터널 작업 프로세스의 사이클타임 산정방안 연구)

  • Park, NamJin;Kim, HyounSeung;Moon, HyounSeok;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.41-49
    • /
    • 2012
  • Radio Frequency Identification(RFID) technology, which replace BAR CODE technology that has been widely utilizing in the field of the manufacturing industry for a long time, has been proven in the whole industries including national defense, transportation, and construction as well as manufacturing industry. Recently, with this trend, researches for adapting the RFID technology have been attempting continually centering on the architectural project in the construction industry. However, those researches are mainly focusing on the experimental utilization such as simple activity and material management. To solve these issues, this study demonstrated methodologies for adapting the RFID technology by the construction steps aiming to analyze cycle time of five types of construction process to the NATM method of tunneling work. Besides, the application of RFID technology in civil engineering work was verified by demonstrating the suggested methodology to actual sites. Therefore, it is expected that the suggested methodology will be utilized for predicting the progress rate and establishing of follow-up work plans, and the site applicability of the RFID technology will be expanded to the civil engineering projects.

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

A Study on the Failure Mechanisms of the Mixed-face Tunnels in Decomposed Granite (화강토지반내 복합막장터널의 파괴메카니즘 연구)

  • 신종호;이인근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.317-329
    • /
    • 2001
  • 서울지하철 터널의 상당 구간이 막장면이 풍화토에서 풍화암까지 변화하는 복합화강토지반에 건설되어 왔다. 화강암풍화지반은 심도에 따라 강도의 변화가 크며, 수위가 높고 투수성 지반인 특징을 갖는다. 터널은 주로 비원형 배수터널로 설계되고 NATM 공법으로 시공되었다. 이와 같은 여건의 터널현장에서 발생하였던 붕괴사례를 조사한 결과, 대부분의 붕괴가 터널 어깨 부근으로부터 시작되었고, 구조적으로 완전하지 않은 라이닝, 그리고 지하수와의 연관성 등의 공통적 특징이 확인되었다. 이러한 터널문제는 지반조건, 시공조건, 터널형상 등 경계조건이 복잡하여 한계평형 해석과 같은 종래의 해석적 방법으로 터널안정을 검토하기가 용이하지 않다. 그 가장 큰 이유중의 하나는 터널의 파괴메카니즘에 대한 분명한 정보를 알 수 없는데 있다. 파괴메카니즘의 조사에는 전통적으로 원심모형시험법이 많이 사용되어 왔다. 그러나 화강토지반내의 터널처럼 복잡한 경계조건을 갖는 터널문제에는 적용하기 어렵다. 따라서 이에 대한 하나의 대안으로서 본 논문에서는 지반거동의 비선형성을 고려하는 Coupled 수치해석법을 이용하여 파괴메카니즘을 조사하였다. 수치해석결과의 증분변위벡터, 누적소성편차변형률 그리고 속도특성치(velocity characteristics)의 분석을 통해 실제 붕괴사례와 잘 일치하는 명확한 파괴메카니즘을 파악할 수 있었다. 이로부터 복잡한 경계조건을 갖는 터널 문제의 안정해석을 위한 파괴메카니즘을 조사하는 수치해석적 접근방법을 제시하였다.

  • PDF

A study on Actual Quantity of Shotcrete Sprayed in a NATM tunnel (NATM 산악터널의 숏크리트 투입율에 관한 연구)

  • Lee, Cheol-Ju;Kim, Sung-Yun;Kim, Dong-Gun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.57-64
    • /
    • 2009
  • This study has analysed actual overbreak, shotcrete rebound and the ratio between the actual quantity of shotcrete to designed shotcrete measured during a NATM tunnel construction. The measured shotcrete rebound was about 7.2% in average which was about half the allowable rebound (15%), showing shotcrete spraying was performed well. Based on the measurement of excavated tunnel shape, average overbreak was about 28.5cm after tunnel excavation by drill and blasting method. This was about 260% of allowable overbreak. In addition, due to the rebound and overbreak actual amount of shotcrete used in the tunnelling work was about 116.5 % of the designed value. According to the field measurement the ratio of actual shotcrete to designed value showed some relation with standard support pattern, but the size of overbreak did not show the correlation with standard support pattern. Hence current design specifications stating the size of overbreak based entirely on standard support pattern should perhaps be reestablished. The insight into the design guideline regarding overbreak and shotcrete.

  • PDF