• Title/Summary/Keyword: NASTRAN

Search Result 394, Processing Time 0.018 seconds

A Study on Fatigue Characteristic of Stent Using Finite Element Analysis (나이티놀 와이어 스텐트의 피로도 특성에 대한 유한요소 해석)

  • Kim, Han-Ki;Shin, Il-Gyun;Kim, Dong-Gon;Kim, Seong-Hyeon;Lee, Ju-Ho;Ki, Byoyng-Yun;Suh, Tae-Suk;Kim, Sang-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • Stents are frequently used throughout the human body. They keep pathways open in vascular or nonvascular duct for a long time. Therefore its stability is very important factor. In recent years, aconsiderable amount of research has been carried out in order to estimate mechanical properties of the stent such as expansion pressure behavior, radial recoil and longitudinal recoil using FEM (Finite element analyses). However, published works on simulation of stent fatigue behavior using FEM are relatively rare. In this paper, a nonlinear finite-element methodwas employed to analyses the compression of a stent using external pressure and fatigue behavior. Finite element analyses for the stent system were performed using NASTRAN FX. In conclusion this paper shows how the stent is behaved in the body, and its fatigue behavior.

  • PDF

Modal Analysis of Automotive Body Model using Mode Synthesis Method (모드합성법을 사용한 차체모델의 모달해석)

  • 장경진;지태한;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.34-39
    • /
    • 1995
  • 최근 승용차의 급격한 수요증가와 더불어 차량의 승차감 개선에 많은 관심이 집중되면서, 저진동 저소음 차량에 대한 연구가 활발히 이루어지고 있다. 이러한 연구의 일부로서, 수치해석법 및 진동실험에 의하여 복잡한 전체 구조물을 해석할 경우, 계산기의 기억용량, 계산시간, 비용이 많이 들게 되고, 한번 해석을 행한 구조물을 부분적으로 변경할지라도 전체의 계산을 다시 수행해야만 한다. 그래서, 복잡한 전체 구조물을 몇 개의 부분구조물로 나누어, 분계의 특성에 맞게 각기 수치해석법이나 모달실험을 적용한 후, 다시 합성하는 방법이 제시되었는데, 이것이 부분구조합성법이다. 이 방법을 사용하면, 유한요소 모델링이 쉬운 분계와 실험이 쉬운 분계를 서로 구분하여 각기 해석한 후 합성함으로써, 각 분계의 특성에 맞는 효율적인 해석을 수행할 수가 있다. 지금까지의 연구를 살펴보면, 유한요소해석에 의한 모드합성법에서는 Hurty가 구속모드법을 제안한 이래, 불구속모드법, 주종계법 등 많은 연구가 있었으나, 실험모달해석을 병행할 경우에는 결합부에서의 회전자유도의 처리문제, 특성 행렬의 동정문제, 많은 절점으로부터 데이타를 얻어야 하는 등의 어려움이 있었다. 이러한 문제를 개선시켜서 Hermanski등은 회전자유도가 보간된 모드합성법(interpolated mode synthesis, IMS)을 연구하여, 적은 실험데이타만을 사용하면서 단순지지 보에 적용함으로써 타당성을 입증하였다. 한편, 차체는 복잡한 부분구조물들로 이루어져 있으므로, 본 연구에서는 유한요소모델링의 용이함, 실험의 간편성, 계산의 효율성등을 추구하며, 실험과 유한요소해석을 병행한 부분구조합성법을 차량의 BIW(body in white)에 적용하는 방법을 연구하게 되었다. 그 기본연구로서 실험과 유한요소해석을 병행하여 회전자유도를 보간하는 방법을 먼저 단순한 판구조물에 적용을 하고, 나아가 실제 BIW를 축소하여 자체 제작한 모형차에 적용시켜 보았다.물은 분계 A(16개의 사각요소)와 분계 B(8개의 사각요소)로 이루어져 있으며 두개의 스프링으로 결합되어 있다. 설계변수는 강성에 국한하였으며 결합부의 결합형태는 탄성결합과 강결합으로 하였다. 감도해석과 축소임피던스 합성법에 의해 구해진 고유진동수와 FRF를 상용 유한 요소 해석 패키지인 MSC/NASTRAN을 통하여 검증하여 이 연구의 타당성을 검토하였다.인풋기어에서의 회전수 변동을 측정하고, 이 실험 데이타를 기초로 하여 엔진 토크 및 변속기에서의 드래그 토크를 계산하여 엔진-변속기 인풋기어의 반한정계 2자유도 진동모델과 비틀림 특성을 가진 클러치 디스크의 프리댐퍼 영역에 대해 시뮬레이션을 수행하여 클러치 비틀림 기구의 설계인자인 비틀림 강성, 히스테리시스 토크에 따른 비틀림 진동 저감 효과를 연구하고자 한다.성을 확인하였다. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity value. Th

  • PDF

Finite Element Analysis of Stress Distribution in using Face Mask according to Traction Point (훼이스 마스크의 견인위치에 따른 응력분포에 관한 유한요소법적 연구)

  • Oh, Kyo-chang;Cha, Kyung-Suk;Chung, Dong-hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.171-181
    • /
    • 2009
  • The objective of this study was to analyse stress distribution of maxillary complex by use of face mask. The construction of the three-dimensional FEM model was based on the computed tomography(CT) scans of 13.5 years-old male subject. The CT image were digitized and converted to the finite element model by using the mimics program, with PATRAN. An anteriorly directed force of 500g was applied at the first premolar 45 degrees downwards to the FH plane and at the first molar 20 degrees downwards to the FH plane. When 45 degrees force was applied at maxillary first premolar, there were observed expansion at molar part and constriction at premolar part. The largest displacement was 0.00011mm in the x-axis. In the y-axis, anterior displacement observed generally 0.00030mm at maximum. In the z-axis, maxillary complex was displaced 0.00036 mm forward and downward. When 20 degrees force was applied at maxilla first molar, there were observed expansion at lateral nasal wall and constriction at molar part. The largest displacement was 0.001mm in the X-axis. In the Y-axis, anterior displacement observed generally 0.004mm at maximum. In the Z-axis, ANS was displaced upward and pterygoid complex was displaced downward. The largest displacement was 0.002mm.

Influence of the length and location of implants on distal extension removable partial dentures: finite element analysis (후방연장 가철성 국소의치에서 임플란트의 길이와 위치가 응력분산에 미치는 영향)

  • Kim, Jin-Hee;Cho, Jin-Hyun;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.186-194
    • /
    • 2015
  • Purpose: To evaluate the effects of implant location and length on stress distribution and displacement in osseointegrated-implants that were associated with mandibular distal extension removable partial dentures (DERPD). Materials and Methods: A sagittally cut model with the #33, #34 teeth and a removable partial denture of the left mandible was used. Seven models were designed with NX 9.0. Models A, B, C had implants with lengths of 11, 6, 4 mm, respectively, under the denture base of the #37 artificial tooth. Models D, E, F had implants with lengths of 11, 6, 4 mm, respectively, under the denture base of the #36 artificial tooth. Model G did not have any implants. Axial force (250 N) was loaded on #36 central fossa. The finite element analysis was performed with MSC Nastran. Von Mises stress maps were plotted to visualize the results. Results: The models of #37 implant placement showed much lower stress concentration on the surrounding bone of the implant compared with #36. The #36 implant position tended to reduce displacement more than #37. Conclusion: When an IARPD is designed, the distal positioning of implant placement has more advantages in the edentulous bone of DERPD on the prognosis of short implants and the stress distribution of edentulous alveolar bone. Using implants with longer lengths are important for stress distribution. However, Additional studies are necessary of the effects of length on implant survival.