• Title/Summary/Keyword: NASTRAN

Search Result 393, Processing Time 0.025 seconds

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

Ultimate Strength Analysis of Ring-stiffened Cylinders with Initial Imperfections( I )

  • PARK CHI-MO;PARK DONG-MIN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.48-56
    • /
    • 2003
  • This paper has developed an efficient nonlinear finite element method that covers both initial deformations and initial stresses of general distribution in calculating the ultimate strength of ring-stiffened cylinders. The developed method and two widely-used commercial codes (NASTRAN and ABAQUS) were simultaneously applied to the same analysis model within the extent of those commercial codes' coverage to check the validity of the present method. After the validity check, it was used for parametric studies for more general cases of initial stress distribution, which produced some useful information about the imperfection sensitivity of the ultimate strength of ring-stiffened cylinders.

Optimized design of composite Cyclocopter rotor system using RSM (반응면 기법을 이용한 복합재료 사이클로콥터 로터의 최적설계)

  • Hwang, Chang-Sup;Hwang, In-Seong;Kim, Min-Ki;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.163-166
    • /
    • 2005
  • 사이클로콥터는 회전축에 평행하게 회전하는 블레이드로 구성된 사이클로이드 블레이드 시스템으로부터 추력을 얻는 수직이착륙 무인기이다. 본 논문에서는 공기역할을 고려한 최적 설계를 통해 결정된 로터 형상을 갖는 사이클로콥터에 대해서 구조 해석을 수행하였다. 복합재료 블레이드의 적층각, 적층수 등을 MSC/NASTRAN 과 반응면 기법 등에 의해서 결정하였다. 블레이드를 포함한 로터 정적 해석을 통해 각 요소가 허용 응력 이내의 값을 가짐을 확인하였고, 동적 해석을 통해 주요 저차 모드가 로터 회전과 불일치하게 함으로써 공진의 가능성을 없앴다.

  • PDF

Optimization of Aerospace Structures using Resealed Simulated Annealing (Rescaled Simulated Annealing에 의한 항공우주 구조물의 최적설계)

  • Ji, Sang-Hyun;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.522-527
    • /
    • 2004
  • Resealed Simulated Annealing (RSA) has been devised for improving the disadvantage of Simulated Annealing (SA) which require tremendous amount of computation time. RSA and SA have been for optimization of satellite structures and for comparison of results from two algorithms. As a practical application, a satellite structure is optimized by the two algorithms. Weights of satellite upper platform and propulsion module are minimized. MSC/NASTRAN is used for the static and dynamic analysis. The optimization results of the RSA are compared with results of the classical SA. The numbers of optimization iterations could be effectively reduced by the RSA.

  • PDF

Structural Analysis and Performance Evaluation of Quick Change Power Chuck for Lathe Operations (선반용 급속 교환 파워 척의 구조해석 및 성능평가)

  • 유중학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.90-95
    • /
    • 1999
  • Chucking for workpieces is very important for productivity and efficiency in lathe operations. In point of productivity top jaws of the chuck should be changed as quickly as possible in order to reduce idle times wherever workpieces are regripped. A quick change power chuck which can change top jaws quickly by using a jaw change handle without any assembly/disassembly processes of screws is analyzed for this study. strength and stiffness of top jaws by centrifugal force are considered for the design. Structural analysis for the chuck is executed and the finite element method is introduced using MSC/NASTRAN software. Also, the performance of the chuck is evaluated by experiments.

  • PDF

APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES

  • LEE K. H.;KIM C. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.607-613
    • /
    • 2005
  • In this study, a simplified approach to modeling the dynamic characteristics of passive constrained layer damping treatments in finite element models is presented. The basic concept is to represent multi-layered composite structures using an equivalent single layer. The equivalent properties are obtained by using the RKU (Ross, Kerwin and Ungar) equations. Comparisons are given between results obtained by the dynamic analysis of the simple models implemented in MSC/NASTRAN and by test measurements. Surface damping treatments are applied to automotive panels as well as simple structures. Using the proposed equivalent modeling technique, higher computational efficiency for the damped composite structures has been obtained.

Flutter Safety Analysis of a Composite Smart UAV with T-tail Configuration (T-형 꼬리날개를 갖는 복합재 스마트 무인기의 플러터 안전성 해석)

  • Kim, D.H.;Yang, Y.J.;Jung, S.U.;Kim, S.J.;Choi, S.C.;Kim, S.C.;Shin, J.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 2005
  • In this study, subsonic flutter analyses have been conducted for a composite smart UAV with T-tail configuration at the critical flight condition. Detailed three-dimensional finite element model for dynamic analysis is constructed including its nonstructural elements corresponding to installed electronic equipments and fuels. Computational structural dynamics and aeroelastic techniques are conducted using MSC/NASTRAN and originally developed in-house codes. The results for fundamental vibration characteristics and flutter instabilities are presented and compared to each other for different fuel conditions.

  • PDF

Numerical Analysis of Dynamic Stress Concentrations in Axisymmetric Problems (축대칭 문제에서의 동적 응력집중 해석)

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2364-2373
    • /
    • 2002
  • In this paper, the finite element equations for the time-domain numerical analysis of transient dynamic axisymmetric problems are newly presented. which are based on the equations of motion in convolution integral as in the previous paper. A hollow cylinder subjected to a sudden internal pressure is solved first as a benchmark problem and then the dynamic stress concentrations are analyzed in detail far hollow cylinders having inner and outer circumferential grooves subjected to sudden internal or axial loadings, all the computed results are compared with the existing or the computed ones obtained by using the commercial finite element packages Nastran and Ansys to show the validity and capability of the presented method.

Eigenvalue Analysis of a Blower Impeller Using Cyclic Symmetry (송풍기 임펠러의 순환대칭성을 이용한 고유치해석)

  • 김창부;안영철
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.523-530
    • /
    • 2000
  • In this paper we present an efficient method for finite element vibration analysis of a structure with cyclic symmetry and applied it to calculating the natural vibration characteristics for a blower impeller. Blower impeller having a cyclically symmetric structure is composed of circumferentially repeated substructures., The whole-structure is partitioned into substructures and then finite element vibration analysis is performed for a substructure using transformed equations for each number of nodal diameter which are derived from discrete Fourier transform in consideration of the cyclic symmetry. natural vibration characteristics for three kinds of models which are blower impeller without support ring with small support ring and with large support ring are numerically analyzed and compared. Accuracy and efficiency of the present method are verified by comparison of results of the analysis with substructure and with whole-structure. Also the results of the analysis by cyclic symmetry module(SOL 115) of MSC/NASTRAN are presented and compared.

  • PDF

Wing Flutter Analysis for 4-Seat Canard-Type Small Aircraft (4인승 선미익형 경항공기 날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong-Woo;Kim, Jin-Won;Shim, Jae-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.680-683
    • /
    • 2005
  • The wing component model for flutter analysis consisting of stiffness, mass, and aerodynamic model has been constructed based on the full airframe finite element model for 4-seat canard-type small aircraft. A study on wing flutter characteristics has been investigated based on the wing component model constructed using PK method in MSC/NASTRAN for flutter analysis. In addition, wing flutter mechanism for the aircraft under consideration has been analyzed based on the results of normal mode and flutter analysis.

  • PDF