• 제목/요약/키워드: NASA method

검색결과 144건 처리시간 0.027초

초음속 유도탄의 동체 와류 예측 및 공력 특성 분석 (PREDICTION OF AERODYNAMIC CHARACTERISTICS AND BODY VORTICES OVER SUPERSONIC MISSILES)

  • 윤성환;김종암;허기훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.308-314
    • /
    • 2010
  • In this study, NASA test model with four cruciform fins is utilized to validate the in-house code. Sur face pressure distribution and aerodynamic coefficients are compared with experimental data. Through extensive validation work, it is verified that the code has capability to predict aerodynamic characteristics of missile configuration. In inviscid analysis through a relatively low computational time, analysis result close to experimental data can be confirmed. However, at high angle of attack more than 20 degree, the accuracy of analysis is gradually decreased due to massive separation. In addition, it has been seen that Reynolds number, turbulence model and numerical method have effects on body vortices and aerodynamic characteristics.

  • PDF

CFD를 이용한 로켓 공력가열 온도 예측 (AERODYNAMIC HEATING TEMPERATURE OF SOUNDING ROCKET USING CFD)

  • 김성룡;김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.89-92
    • /
    • 2006
  • Aerodynamic heating temperature shown in a NASA's sounding rocket test data was reproduced with CFD technique, comparing with those with analytical method CFD made heat transfer rates and recovery temperatures as the flight trajectory, which made it possible to calculate the wall temperature of rocket. The predicted wall temperature was compared with analytically predicted temperatures. Both the temperatures were compatible although their recovery temperature and heat transfer rates are a little different.

  • PDF

2차원 날개의 서리얼음 형상 예측 (PREDICTION OF RIME ICE ACCRETION SHAPE ON 2D AIRFOIL)

  • 백선우;이관중;오세종
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.45-52
    • /
    • 2009
  • Ice accretion may occur when the sold surface passes through the clouds containing supercooled water droplets. In the case of aircraft, it can result in serious performance degradation and safety hazard. In this study, numerical analysis code has been developed to predict the rime ice shapes on a 2-D airfoil and the computation results are validated against experimental data of NASA and other computation results of well-known ice prediction code, LEWICE. In addition, the effects of various numerical parameters on the ice shape have been systematically investigated.

Conceptual Design of a Rocket-Powered Plane And Its Use For Space Tourism

  • Park, Chul;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.46-55
    • /
    • 2005
  • A rocket-powered vehicle is designed conceptually which uses an engine running on methane and oxygen and delivering 10 tons of thrust. The aerodynamic coefficients of the vehicle are taken to be those of the Japan's HOPE-X, and the weight of this vehicle is estimated using a method developed by NASA. The resulting vehicle will be about 9 meters long, 5.8 meters in wing span, weigh about 2 tons empty, carry a maximum of 5.6 tons of propellant, and endure a g-load of 4.5. The craft will be able to carry five passengers, in addition to a pilot, and fly for space tourism between a northern and a southern airport with a maximum g-load varying from 3g to 4g depending on the route flown.

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • 오상훈;;김영민;이창환
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

ICESat 인공위성을 이용한 Amery Ice-Shelf (빙붕)의 속도 계산 (Amery Ice-Shelf velocity from ICESat laser altimetry)

  • 서기원;한신찬
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2008년도 공동학술대회
    • /
    • pp.145-148
    • /
    • 2008
  • 2003년 1월에 발사된 ICESat 인공위성은 극지방 전 지역을 거의 관측할 수 있는 극궤도 위성으로 극지방 빙하 변화 연구에 많은 기여를 하고 있다. ICESat은 GLAS(Geoscience Laser Altimetry System) 센서를 이용하여 지형의 변화를 정밀 관측함으로써 빙하의 고도 변화 탐지에 매우 유용하다. 이는 기존의 SAR 위성을 이용한 빙하 연구의 단점을 보완할 수 있을 것으로 기대된다. ICESat의 정밀 빙하 고도 관측을 이용하여 Amery 빙붕의 속도 변화를 파악할 수 있는 새로운 방법을 제시하였다. 시간의 변화에 따라 수평적으로 이동하는 빙붕의 변화를 ICESat 위성 자료를 통해 확인할 수 있었으며 이를 통해 빙붕의 속도 분포를 계산할 수 있을 것으로 기대된다. 본 연구를 통해 개발된 방법은 남극의 다른 빙붕 연구에도 적용될 수 있을 것이다.

  • PDF

리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계 (Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply)

  • 박호성;정윤도;김현기;오성권
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

Lifting Fan의 위치가 복합형 UAM의 공력특성에 미치는 영향 (Analysis with Lifting Fan Position of Hybrid UAM Aerodynamic Characteristics)

  • 이수현;조환기;임동균
    • 한국항공운항학회지
    • /
    • 제30권2호
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, the development of UAM, which was named by NASA as an alternative to solve the traffic and environmental problems caused by the rapidly progressing urbanization. When designing UAM, the location of lift fans greatly affects the core technology of the eVTOL type, distributed electric propulsion technology and aerodynamic performance of the vehicle. In this paper, a hybrid UAM model was designed using OpenVSP, an open source aircraft configuration modeling program, and aerodynamic analysis was performed according to the lift fans position change by the vortex lattice method. As a result, it is confirmed that the flight parameters and trailing wakes are stable by fixing the lift fan with the state rotated 0° to the flow direction of the aircraft during cruise flight. Also, OpenVSP is a suitable tool to be used in aircraft configuration modeling and design.