• Title/Summary/Keyword: NAPLs

Search Result 21, Processing Time 0.036 seconds

이액상 시스템에서 토양으로부터 비수용성 액체로의 PAHs의 이동특성

  • 양지원;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.247-249
    • /
    • 2002
  • The transfer behaviors of three Polyarmatic hydrocarbons (PAHs) from soil to non-aqueous phase liquid (NAPL) were investigated. The three different PAHs were phenanthrene, anthracene, and pyrene. The used NAPLs were silicone oil and paraffine oil. The percentage of the remained PAHs into soil were similar without the relation to kinds of NAPLs. And the transfer of PAHs into NAPLs was fastened until 1 day as the increase of mixing rate but in the case of 450 rpm, the remained PAHs into soil was increased after 1 day because NAPLs was emulsified.

  • PDF

The Evaluation of Petroleum Contamination in Heterogeneous Media Using Partitioning Tracer Method (분배성 추적자 시험법을 이용한 불균질 지반의 유류 오염도 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1372-1377
    • /
    • 2009
  • For the remediation of the subsurface contaminated by nonaqueous phase liquids(NAPLs), it is important to characterize the NAPL zone properly. Conventional characterization methods provide data at discrete points. To overcome the weak points of conventional characterization methods, the partitioning tracer method has been developed and studied. The average saturation of NAPL($S_n$), which is the representative and continuous saturation value within contaminated site, can be calculated by comparing the transport of the partitioning tracers to that of the conservative tracer in the partitioning tracer method. In this study, the application of the partitioning tracer method in heterogeneous media was investigated. To represent the heterogeneous condition of subsurface, a two-dimensional soil box was divided into four layers and each layer contained different sized soils. Soils in the soil box were contaminated by the mixture of kerosene and diesel, and partitioning tracer tests were conducted before and after the contamination using methanol as conservative tracer and 4-methyl-2-pentanol, 2-ethyl-1-butanol, and hexanol as partitioning tracers. The response curves of partitioning tracers from contaminated soils were separated and retarded in comparison with those from non-contaminated soils. The contamination of soils by NAPLs, therefore, can be detected by partitioning tracer method considering these retardations of tracers. From our experiment condition, the average saturation of NAPLs calculated by partitioning tracer method using the methanol as conservative tracer and hexanol as partitioning tracer showed the highest accuracy, though all results were underestimated. Further studies, therefore, were needed for improving the accuracy using the partitioning tracer test in heterogeneous media.

  • PDF

A Study of surfactant-based remediation for removal of toluene and PCE in contaminated water

  • Kim, Eun-Sik;Lee, Dal-Heui;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • The purpose of this study was to assess the effect of surfactant on the rate of NAPLs(non-aqueous phase liquids) solubilization. The experimental variables were surfactant type, NAPLs type and water type. The main experimental designs were consists of two phases. The solubilization rate is sensitive to surfactant type based on this test. Used aqueous surfactants were solubilized and removed 72.77 to 89.90% of toluene, PCE(tetrachloroethylene) from the contaminated water during the test, respectively. T60 has higher and stable recovery ratio than SDS in surfactant type but, the micelle of the T60 is more weaker than that of SDS based on this study's results. And the solubilization rate in used water type was almost same.(deionized water, surface water).

  • PDF

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

Effects of Hydrodynamic Condition on DNAPL Dissolution: Experimental Observation

  • 김용철;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.57-59
    • /
    • 2002
  • The dissolution process of NAPLs is significantly important in predicting the transport and/or fate of the contaminants and designing remedial systems. In this research, experimental observations on dissolution of TCE pool under various hydrodynamic conditions are done using an aquifer model. Hydrodynamic parameters such as linear pore velocity and dispersion coefficient are estimated from the results of preliminary tracer tests using bromide as conservative tracer before doing the TCE dissolution experiments. It is found that hydrodynamic parameters are distinctly affected by the clay lens imbeded in the aquifer model. Nonequilibrium and transient dissolution rates are observed from the results of TCE dissolution experiments.

  • PDF

Estimating Partition Coefficients of Partitioning Tracers between Water and BTEX Mixtures (BTEX 혼합물질과 액상 간 분배성 추적자의 분배계수 예측)

  • Rhee, Sung-Su;Cho, Sang-Youn;Oh, Myoung-Hak;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.47-54
    • /
    • 2007
  • The partitioning tracer method has been studied as an alternative method for detecting and characterizing the distribution of nonaqueous phase liquids (NAPLs) contaminants in subsurface. The reliability of the partitioning tracer method depends on accurate measurements of partition coefficients of the partitioning tracers between water and NAPLs. In this study, partition coefficients of several alcohol tracers between water and benzene, toluene, ethylbenzene, xylene, and BTEX mixtures are estimated using the modified approach of equivalent alkane carbon number (EACN). Agreements between the measured and estimated partition coefficients were generally observed in experiments. Based on these results, it is confirmed that the partition coefficients of tracers are readily obtained without experiments if the EACN values for the tracers and LNAPLs are known.

An Experimental Study of the Effect of the Test-well Arrangement on the Partitioning Interwell Tracer Test for the Estimation of the NAPL Saturation (지하수 유동 방향에 대한 관정배열이 분배추적자 시험에 미치는 영향 분석)

  • Kim, Bo-A;Kim, Yongcheol;Yeo, In Wook;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.111-122
    • /
    • 2014
  • Partitioning interwell tracer test (PITT) is a method to quantify and qualify a site contaminated with NAPLs (Non-Aqueous Phase Liquids). Analytical description of PITT assumes that the injection-pumping well pair is on the line of the ambient groundwater flow direction, but the test-well pair could frequently be off the line in a real field site, which could be an erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair on the ambient groundwater flow direction based on the result from PITT. From the experiments, it was found that the obliqueness of the test-well pair to the ambient groundwater flow direction could affect the tracer test resulting in a decreased NAPL estimation efficiency. In case of an oblique arrangement of the test-well pair to the ambient flow direction, it was found that the injection of a chase fluid could enhance the estimation efficiency. An increase of the pumping rate could enhance the recovery rate but it cannot be said that a high pumping rate can increase the test efficiency because a high pumping rate cannot give partitioning tracers enough time to partition into NAPLs. The results have a implication that because the arrangement of the test-well pair is a controlling factor in performing and interpreting PITT in the field in addition to the known factors such as heterogeneity and the source zone architecture, flow direction should be seriously considered in arranging test-well pair.

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction (증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화)

  • Lee, Jun-Ho;Han, Sun-Hyang;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.425-444
    • /
    • 2013
  • This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

Remediation of Diesel-Contaminated Soil by Electrokinetically Supplied Bacterial Cells

  • 이효상;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.20-23
    • /
    • 2000
  • The use of electrokinetic injection and transport for the distribution of an NAPLs-degrading microorganism in a sandy soil bed was studied. After the injection of the cell into cathode side of bed, an electric current was applied. The transport of cell though the sandy soil was achieved by electokinetics, mainly by electrophoresis, The pH control in electrode chamber plays un important role to achieve desirable cell transport because H$^{+}$ generated at anode is toxic or inhibits the transport of cells. Electokinetic distribution rate of bacterial cells changed depending on the applied electric current and pH. The degradation of diesel by electrokinetically transport cells were monitored.d.

  • PDF