• 제목/요약/키워드: NADPH Oxidase

검색결과 171건 처리시간 0.034초

운동과 활성산소 (Exercise and Reactive Oxygen Species)

  • 김혜진;이원준
    • 생명과학회지
    • /
    • 제27권9호
    • /
    • pp.1078-1085
    • /
    • 2017
  • 활성산소란 세포에 손상을 가하는 모든 종류의 변형된 산소를 의미하며, 활성산소 생성의 증가는 세포 내의 산화적 스트레스를 유발하여 심혈관 질환, 암, 당뇨, 근위축 등 각종 질병의 원인이 된다. 그러나 적정 수준의 활성산소는 세포의 성장 및 발달에 중요한 역할을 담당하는 것으로 보고되어 있으며, 골격근에서의 활성산소는 근기능과 대사에 필수적인 역할을 담당한다. 규칙적인 운동은 건강상 다양한 이점을 가져다주지만, 과도한 운동은 골격근을 비롯한 다양한 체내 조직에서 활성산소의 생성을 증가시키며, 고농도의 활성산소 생성은 세포 손상을 일으키는 것으로 보고되고 있다. 따라서 운동에 의한 활성산소의 생성 증가와 그에 따른 분자적 기전은 운동이 주는 건강상의 많은 이점들을 이해하는데 있어 중요한 기전으로 받아들여지고 있다. 최근 운동 강도나 형태에 따른 활성산소의 생성 수준과 근육 관련 유전자 발현 및 대사 관련 연구에 있어 활성산소의 역할에 관한 연구들이 활발히 이루어지고 있지만 심도 있는 기전적 연구와 이해는 부족한 실정이다. 따라서 본 총설에서는 운동에 의한 활성산소 생성 기전과 그에 따른 역할에 대한 선행 연구들을 살펴보고, 운동에 의한 인슐린 신호체계의 활성 및 그에 따른 수명 조절에 있어 NADPH 산화효소의 역할에 대해서도 살펴보았다.

식이 Vitamin E가 Streptozotocin 유발 당뇨쥐의 간 및 폐조직에서의 Microsomal Mixed Function Oxidase System에 미치는 영향 (Effect of Dietary Vitamin E on the Microsomal Mixed Function Oxidase System of Liver and Lung in Streptozotocin-induced Diabetic Rats)

  • 박영란;이순재;임영숙;주길재
    • 한국식품영양과학회지
    • /
    • 제25권6호
    • /
    • pp.969-975
    • /
    • 1996
  • 본 연구는 streptozotocin 유발 당뇨쥐의 간과 폐조직에서의 MFO계 활성 변화 및 지질과산화에 미치는 vitamin E의 영향을 관찰하고자 본 실험을 행하였다. 체중 140g 정도의 Sparague-Dawley종 숫컷을 대조군(40mg vitamin E/kg diet group)과 당뇨유발 실험군으로 나눈 후 실험군은 다시 식이내 vitamin E 공급수준에 따라 DM-0E군(0mg vitamin E/kg diet group), DM-40E군(40mg vitamin E/kg diet group), DM-400E군(400mg vitamin E/kg diet group) 나누어 4주간 사육한 후 대조군을 제외한 실험군을 STZ로 당뇨를 유발시켰다. 당뇨유발 6일 후 쥐를 희생시켜 간조직 및 폐조직 microsome 중의 cytochrome P$_{450}$ 및 cytochrome b$_{5}$함량과 NADPH-cytochrome P$_{450}$ reductase 활성도를 측정하고 아울러 microsome내의 지질과산화물을 측정하여 다음과 같은 결과를 얻었다. 1. 간조직 중의 cytochrome P$_{450}$ 함량은 대조군에 비해 DM-0E군, DM-40E 군 및 DM-400E군이 각각 162%, 150%, 56% 증가하였으며 또 DM-400E군은 DM-0E, DM-40E군에 비해 낮았다. 폐조직 중의 cytochrome P$_{450}$ 함량도 간조직에 비해 함량은 낮았지만 경향은 비슷하였다. 2. 간조직 중의 cytochrome b$_{5}$은 대조군에 비해 DM-0E군, DM-40E군은 각각 70%, 53%씩 증가하였으나 DM-400E군은 대조군 수준이었다. 폐조직 중의 cytochrome b$_{5}$함량도 대조군에 비 해 DM-0E, DM-40E 및 DM-400E군에서 각각 149%, 116%, 50%씩 증가하였다. 3. 간조직에서의 cytochrome P$_{450}$ reductase 활성은 대조군에 비해 DM-0E군은 58%, DM-40E군에서는 47% 증가하였으며 DM-400E는 대조군 수준이었다. 폐조직에서도 간조직에서와 비슷한 경향이었다. 4. 간조직의 지질과산화물가는 대조군에 비해 DM-0E군, DM-40E군, DM-400E군이 각각 143%, 95%, 31%씩 높았다. 또 DM-400E군은 DM-0E, DM-40E군에 비해 약 50% 정도 낮았다. 폐조직에서도 경향은 비슷했는데 간조직 보다 과산화적 손상이 다소 높았다. 이상의 결과에서 STZ 유발 당뇨쥐에서는 MFO system의 활성이 증가되고 지질과산화가 촉진되었다. 그러나 식이 중의 vitamin E의 적절한 공급은 MFO system 활성이 저하되고 과산화적 손상이 현저하게 완화됨을 볼 수 있었다.

  • PDF

Effects of Green Tea Catechin on Mixed Function Oxidase System and Antioxidative Defense System in Rat Lung Exposed to Microwave

  • Kim, Mi-Ji;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • 제9권1호
    • /
    • pp.53-57
    • /
    • 2004
  • The purpose of this study was to investigate the effects of green tea catechin on mixed function oxidase system (MFO), lipofuscin contents, carbonyl value, oxidative damage and the antioxidative defense system in lung of microwave exposed rats. Experimental groups were divided to normal group and microwave exposed group. The microwave exposed groups were subdivided into three groups: catechin free diet (MW-0C) group, 0.25% catechin (MW-0.25C) group and 0.5 % catechin (MW-0.5C) group according to the levels of dietary catechin supplementation. The rats were irradiated with microwave at frequency of 2.45 GHz for 15 min. Experimental animals were sacrificed at 6th day after microwave irradiation. The contents of cytochrome P$_{450}$ contents in MW-0C group was increased to 95% , compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 16% and 31%, respectively, compared with MW-0C group. The activity of NADPH-cytochrome P$_{450}$ reductase in MW-0C group was increased to 44%, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 12% and 17%, respectively, compared with MW-0C group. The activity of superoxide dismutase (SOD) in MW-0C group was decreased to 21 %, compared with normal group. MW-0.25C and MW-0.5C group were significantly (p < 0.05) increased, compared with MW-0C group. The activity of glutathione peroxidase (GSHpx) in MW-0C group was significantly decreased, compared with normal group. MW-0.25C and MW-0.5C groups were recovered to the level of normal group. The thiobarbituric acid reactive substances (TBARS) content in MW-0C group was increased to 34 %, compared with normal group. Catechin supplementation groups were maintained the level of normal group. The levels of caybonyl value in MW-0C group was increased to 21 %, compared with normal group. MW-0.25C and MW-0.5C groups were reduced to 14% and 12%, respectively, compared with MW-0C group. The lipofuscin contents in MW-0C group were increased to 23.4 %, compared with normal group. That of MW-0.5C group was significantly reduced, compared with MW-0C group. In conclusion, MFO system was activated and the formation of oxidized protein, lipofuscin was increased and antioxidative defense system was weakened of lung tissue in microwave exposed rats, thus oxidative damage was increased. But it was rapidly recovered to normal level by green tea catechin supplementation.n.

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta;Beikircher, Gabriel;Weinhaeusel, Andreas;Gruber, Reinhard
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.66-76
    • /
    • 2017
  • Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

항고혈압 치료제 로사탄에 의해 인산화 되는 단백질 발굴 (Identification of Phosphoproteins Induced by AT1 Receptor Blocker Losartan)

  • 이창우;김미진;장세헌
    • 생명과학회지
    • /
    • 제18권7호
    • /
    • pp.918-923
    • /
    • 2008
  • 안지오텐신II 수용체(AT1 수용체)는 혈관수축과 체내 전해질이온 조절에 중요한 역할을 한다. AT1 수용체 길항제(ARB)는 고혈압 치료에 이용되며 최근에는 당뇨병을 포함한 대사질환에 효능이 있음이 알려져 있다. 이 연구에서는 ARB 처리 후 세포 내 인산화단백질에 인산화가 일어나는지를 antibody array를 이용하여 실험하였다. 아미노산세린 및 트레오닌에 인산화되는 단백질 6개, 티로신에 인산화되는 단백질 12개에 대한 항체를 선정하여 nitrocellulose membrane에 부착시켰다. AT1 수용체를 발현한 COS-1 세포에 로사틴(losartan)을 처리하였을 때 small GTPase인 RhoA의 세린 잔기에 인산화가 20% 증가함을 관찰하였다. RhoA는 세포골격의 재배열에 중요한 역할을 하며 세린 잔기에 인산화가 되면 활성이 억제된다. 본 연구결과로부터 ARB가 AT1 수용체에 의한 혈관수축을 억제할 뿐만 아니라 새로운 세포 신호룰 생성함을 알 수 있다.

수면박탈로 유도한 Hippocampus Dentate gyrus의 산화 스트레스에 대한 백합, 연자육의 신경세포보호효과 (Neuroprotective Effect of Lilii bulbus, Nelumbins semen on the Sleep Deprivation-induced Oxidative Stress in the Hippocampus Dentate Gyrus)

  • 최미혜;박인식
    • 동의생리병리학회지
    • /
    • 제31권1호
    • /
    • pp.65-74
    • /
    • 2017
  • Sleep deprivation is an extremely common event in today's society. It has caused learning cognitive skill deterioration and poor concentration, increased disease such as heart disease, diabetes and obesity, sexual function decrease, infertility increase, depression and autonomic nervous system disorder. Sleep deprivation-induced stress caused NADPH oxidase and oxidative stress. And this oxidative stress induces apoptosis. Lilii bulbus and Nelumbins semen are known to mental and physical relaxation effects. In this study, we induced sleep deprivation(SD) in Sprague-Dawley rats in water for 5 days and thereafter administered orally L. bulbus and N. semen for 5 days. Brain tissues were observed by histochemical, immunohistochemical and tunel staining. The immunoreactives of Tumor necrosis factor ${\alpha}$, Neuronal nitric oxide synthases, Phospho-SAPK/JNK and gp91-phox of the L. bulbus administered group and N. semen administered group were weaker than those of sleep deprivation group. In the L. bulbus administered group and N. semen administered group, apoptosis was decreased than that of sleep deprivation group. Proapoptotic p53, Bax, Cleaved caspase 3 immunoreactives of the administered group were weaker than those of sleep deprivation group, whereas anti-apoptotic Bcl-2 immunoreactity was stronger in the L. bulbus administered group and N. semen administered group. Antioxidant mechanism such as DJ-1, superoxide dismutase 1, Nuclear factor-like 2 immunoreactives of the L. bulbus and N. semen administered group were stronger than those of sleep deprivation group. These results demonstrate that L. bulbus, N. semen had the neuroprotective effects on the sleep deprivation-induced oxidative stress in the hippocampus.

Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells

  • Lee, So Hee;Paek, A Rome;Yoon, Kyungsil;Kim, Seok Hyun;Lee, Soo Young;You, Hye Jin
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Tight junction protein 1 (TJP1), a component of tight junction, has been reported to play a role in protein networks as an adaptor protein, and TJP1 expression is altered during tumor development. Here, we found that TJP1 expression was increased at the RNA and protein levels in TGF-${\beta}$-stimulated lung cancer cells, A549. SB431542, a type-I TGF-${\beta}$ receptor inhibitor, as well as SB203580, a p38 kinase inhibitor, significantly abrogated the effect of TGF-${\beta}$ on TJP1 expression. Diphenyleneiodonium, an NADPH oxidase inhibitor, also attenuated TJP1 expression in response to TGF-${\beta}$ in lung cancer cells. When TJP1 expression was reduced by shRNA lentiviral particles in A549 cells (A549-sh TJP1), wound healing was much lower than in cells infected with control viral particles. Taken together, these data suggest that TGF-${\beta}$ enhances TJP1 expression, which may play a role beyond structural support in tight junctions during cancer development.

육군자탕(六君子湯)이 Glutamate에 의한 C6 신경교세포의 Apoptosis에 미치는 영향 (Effect of Yukgunja-tang on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 장원석;신용진;고석재;하예진;권영미;신선호
    • 대한한방내과학회지
    • /
    • 제31권3호
    • /
    • pp.586-599
    • /
    • 2010
  • Objective : The water extract of Yukgunja-tang(YGJT) has been traditionally used in treatment of qi deficiency and phlegm in Oriental medicine. However, little is known about the mechanism by which YGJT protects neuronal cells from injury damages. Therefore, this study was designed to evaluate the protective effects of YGJT on C6 glial cells by glutamate-induced cell death. Methods : The present study describes glutamate, which is known as an excitatory neurotransmitter, related with oxidative damages, and YGJT, which shows protective effects against glutamate-induced C6 glial cell death. One of the main mediators of glutamate-induced cytotoxicity was known on the generation of reactive oxygen species(ROS) via activation of NADPH oxidase (NOX). The protective effects of antioxidant(NAC) and NOX inhibitor(apocynin) on the glutamate-induced C6 glial cells were determined by a MTT reduction assay. Result : YGJT inhibited glutamate-induced ROS generation via inhibition of NOX expression on glutamate-stimulated C6 glial cells. Furthermore, YGJT attenuated glutamate-induced caspase activation. These results suggest that YGJT could be a new potential candidate against glutamate-induced oxidative stress and cell death. Conclusion : These findings indicate that in C6 glial cells, ROS plays an important role of glutamate-induced cell death and that YGJT may prevent cell death from glutamate-induced cell death by inhibiting the ROS generation.

Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species

  • Jun, Semo;Kim, Seok Won;Kim, Byeol;Chang, In-Youb;Park, Seon-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.267-276
    • /
    • 2020
  • T In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

A case report of chronic granulomatous disease presenting with aspergillus pneumonia in a 2-month old girl

  • Lee, Eun;Oh, Seak-Hee;Kwon, Ji-Won;Kim, Byoung-Ju;Yu, Jin-Ho;Park, Chan-Jeoung;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • 제53권6호
    • /
    • pp.722-726
    • /
    • 2010
  • Chronic granulomatous disease (CGD) is an uncommon inherited disorder caused by mutations in any of the genes encoding subunits of the superoxide-generating phagocyte NADPH oxidase system, which is essential for killing catalase producing bacteria and fungi, such as $Aspergillus$ species, $Staphylococcus$ $aureus$, $Serratia$ $marcescens$, $Nocardia$ species and $Burkholderia$ $cepacia$. In case of a history of recurrent or persistent infections, immune deficiency should be investigated. Particularly, in the case of uncommon infections such as aspergillosis in early life, CGD should be considered. We describe here a case of CGD that presented with invasive pulmonary aspergillosis in a 2-month-old girl. We confirmed pulmonary aspergillosis noninvasively through a positive result from the culture of bronchial alveolar lavage fluid, positive serological test for $Aspergillus$ antigen and radiology results. She was successfully treated with Amphotericin B and recombinant IFN-${\gamma}$ initially. Six weeks later after discharge, she was readmitted for pneumonia. Since there were infiltrates on the right lower lung, which were considered as residual lesions, voriconazole therapy was initiated. She showed a favorable response to the treatment and follow-up CT showed regression of the pulmonary infiltrates.