• Title/Summary/Keyword: NADH-dehydrogenase

Search Result 146, Processing Time 0.021 seconds

Enzyme Activities and Histochemical Changes in the Hind Limb Muscle of the Mouse Treated with 6-Aminonicotinamide

  • Kim Tai-Jeon;Bae Hyung-Joon;Kang Hee-Gyoo;Lee Dong-Beom
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • We investigated enzyme activity and histochemical changes in hind limb of mouse treated with 6-aminonicotinamide (6-AN). The activity of aspartate aminotransferase, alanine aminotransferase and creatine phosphokinase in 6-AN treated group were significantly higher than those of the control and pair-fed groups. Also, the activity of lactic dehydrogenase in 6-AN treated group was the highest among the three groups, whereas that of the pair-fed group were higher than that of the control group. In the 6-AN treated group, oxidative histochemical stains, nicotinamide adenine dinucleotide reductase (NADH), succinyl dehydrogenase (SDH) showed increased scattered fibers in 6-AN treated subsarcolemma. Cytochrome c oxidase (COX) stain showed decreased up to 85% in 6-AN treated fibers. These results demonstrate that 6-AN antagonizes cell metabolism and induces the morphological deformity like the other mitochondrial muscle diseases. Therefore, we suppose that these data would be useful indexes for disclosing the mechanism of mitochondrial muscle disease.

  • PDF

Immobilization of Alcohol Dehydrogenase in Membrane: Fouling Mechanism at Different Transmembrane Pressure

  • Marpani, Fauziah;Zulkifli, Muhammad Kiflain;Ismail, Farazatul Harnani;Pauzi, Syazana Mohamad
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.260-265
    • /
    • 2019
  • Alcohol dehydrogenase (ADH) (EC 1.1.1.1) was selected as the enzyme which will be immobilized on ultrafiltration membrane by fouling with different transmembrane pressure of 1, 2 and 3 bars. ADH will catalyze formaldehyde (CHOH) to methanol ($CH_3OH$) and simultaneously oxidized nicotinamide adenine dinucleotide (NADH) to $NAD^+$. The concentration of enzyme and pH are fixed at 0.1 mg/ml and pH 7.0 respectively. The objective of the study focuses on the effect of different transmembrane pressure (TMP) on enzyme immobilization in term of permeate flux, observed rejection, enzyme loading and fouling mechanism. The results showed that at 1 bar holds the lowest enzyme loading which is 1.085 mg while 2 bar holds the highest enzyme loading which is 1.357 mg out of 3.0 mg as the initial enzyme feed. The permeate flux for each TMP decreased with increasing cumulative permeate volume. The observed rejection is linearly correlated with the TMP where increase in TMP will cause a higher observed rejection. Hermia model predicted that at irreversible fouling with standard blocking dominates at TMP of 3 bar, while cake layer and intermediate blocking dominates at 1 and 2 bar respectively.

Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease (황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향)

  • Lim, Hye-Sun;Moon, Byeong Cheol;Park, Gunhyuk
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF

Cytoprotective Effect of Ethanol Extract from Maesil (Prunus mume Sieb. et Zucc.) on Alloxan-induced Oxidative Damage in Pancreatic-cell, HIT-T15 (Alloxan에 의한 HIT-T15 세포의 산화적 손상에 대한 매실(Prunus mume Sieb. et Zucc.) 주정추출물의 세포보호효과)

  • Kim, In-Hye;Kim, Jong-Bae;Cho, Kang-Jin;Kim, Jae-Hyun;Om, Ae-Son
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.184-192
    • /
    • 2012
  • The present study was designed to examine the potential antidiabetic and antioxidant effect of ethanol extract from $Prunus$ $mume$ fruit (PME) against alloxan-induced oxidative stress in pancreatic ${\beta}$-cells, HIT-T15. To evaluate the antidiabetic effect of PME, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliu bromide (MTT) cell proliferation assay, lactate dehydrogenase (LDH) release assay, $NAD^+$/NADH ratio and insulin secretion were assessed. We also measured its antioxidant effect against alloxan-induced oxidative stress in the cells by assessing the levels of the antioxidant enzymes including superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). The results of this analysis showed that alloxan significantly decreased cell viability, increased LDH leakage, and lowered $NAD^+$ /NADH ratio and insulin secretion in HIT-T15 cells. However, PME significantly increased the viability of alloxan-treated cells and lowered LDH leakage. The intracellular $NAD^+$ /NADH ratio and insulin secretion were also increased by 1.5~1.9-fold and 1.4-fold, respectively, after treatment with the PME. The HIT-T15 cells treated with alloxan showed significant decreases in the activities of antioxidant enzymes, while PME significantly elevated the levels of antioxidant enzymes. Based on these results, we suggest that PME could have a protective effect against the cytotoxicity and dysfunction of pancreatic ${\beta}$-cells in the presence of alloxan-induced oxidative stress.

Biological Analysis of Enzymatic Extracts from Sargassum fulvellum Using Polysaccharide Degrading Enzyme (Polysaccharide Degrading Enzyme을 이용한 참모자반 효소분해 추출물의 생리활성 연구)

  • Cho, Eun Kyung;Kang, Su Hee;Choi, Young Ju
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.349-355
    • /
    • 2013
  • SC092 strain, producing a polysaccharide degrading enzyme, was isolated from the seawater. This strain was identified as Microbulbifer sp. using the comparative sequence analysis against known 16S rRNA sequence. A polysaccharide degrading enzyme from this strain was used to acquire the enzymatic extracts of Sargassum fulvellum. DPPH radical scavenging and SOD activity of the enzyme extracts of S. fulvellum were about 61.9% and 82.9% at 2 mg/mL, respectively. Nitrite scavenging activities was 52.5% at 2 mg/mL on pH 1.2. In addition, ${\alpha}$-glucosidase inhibitory activity was also increased in a dose-dependent manner and was about 52.7% at 2 mg/mL. To determine the influence of enzyme extracts of S. fulvellum on alcohol metabolism, the generating activity of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were measured. ADH and ALDH activities were 118.0% and 177% at 2 mg/mL, respectively. ${\alpha}$-glucosidase inhibitory activity of enzyme extracts of S. fulvellum was remarkably increased in a dose-dependent manner and was about 52.7% at 2 mg/mL. These results indicate alcoholizing and ${\alpha}$-glucosidase inhibitory activities can be enhanced by the enzymatic extracts of S. fulvellum.

Inhibitory Properties of Nerve-Specific Human Glutamate Dehydrogenase Isozyme by Chloroquine

  • Choi, Myung-Min;Kim, Eun-A;Choi, Soo-Young;Kim, Tae-Ue;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1077-1082
    • /
    • 2007
  • Human glutamate dehydrogenase exists in hGDH1 (housekeeping isozyme) and in hGDH2 (nerve-specific isozyme), which differ markedly in their allosteric regulation. In the nervous system, GDH is enriched in astrocytes and is important for recycling glutamate, a major excitatory neurotransmitter during neurotransmission. Chloroquine has been known to be a potent inhibitor of house-keeping GDH1 in permeabilized liver and kidneycortex of rabbit. However, the effects of chloroquine on nerve-specific GDH2 have not been reported yet. In the present study, we have investigated the effects of chloroquine on hGDH2 at various conditions and showed that chloroquine could inhibit the activity of hGDH2 at dose-dependent manner. Studies of the chloroquine inhibition on enzyme activity revealed that hGDH2 was relatively less sensitive to chloroquine inhibition than house-keeping hGDH1. Incubation of hGDH2 was uncompetitive with respect of NADH and non-competitive with respect of 2-oxoglutarate. The inhibitory effect of chloroquine on hGDH2 was abolished, although in part, by the presence of ADP and L-leucine, whereas GTP did not change the sensitivity to chloroquine inhibition. Our results show a possibility that chloroquine may be used in regulating GDH activity and subsequently glutamate concentration in the central nervous system.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

Effect of Herbicide Paraquat on NAD(H)-Redox-cycle (제초제 Paraquat의 NAD(H) 산화환원에 대한 영향)

  • Kim Mi-Lim;Choi Kyung-Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.304-310
    • /
    • 2005
  • This study was carried out to investigate the effect of herbicide paraquat (1,1-dimethyl-4,4-bipyridilium dichloride) on the electron transport system of the cell. When actively growing cells of bacteria were exposed to the 1.0 mM paraquat, more than $50\%$ of the cells were killed at 0 hour. But specific activities of superoxide dismutase (SOD) were not changed at 0 hour of paraquat treatment. Oxido-reductions of NAD (H) by the suspension of bacterial membtane, rat mithochondria and NAD-dependent dehydrogenase were accelerated by paraquat treatment.

Critical Role of the Cysteine 323 Residue in the Catalytic Activity of Human Glutamate Dehydrogenase Isozymes

  • Yang, Seung-Ju;Cho, Eun Hee;Choi, Myung-Min;Lee, Hyun-Ju;Huh, Jae-Wan;Choi, Soo Young;Cho, Sung-Woo
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • The role of residue C323 in catalysis by human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) was examined by substituting Arg, Gly, Leu, Met, or Tyr at C323 by cassette mutagenesis using synthetic human GDH isozyme genes. As a result, the $K_m$ of the enzyme for NADH and ${\alpha}-ketoglutarate$ increased up to 1.6-fold and 1.1-fold, respectively. It seems likely that C323 is not responsible for substrate-binding or coenzyme-binding. The efficiency ($k_{cat}/K_m$) of the mutant enzymes was only 11-14% of that of the wild-type isozymes, mainly due to a decrease in $k_{cat}$ values. There was a linear relationship between incorporation of [$^{14}C$]p-chloromercuribenzoic acid and loss of enzyme activity that extrapolated to a stoichiometry of one mol of [$^{14}C$] incorporated per mol of monomer for wild type hGDHs. No incorporation of [$^{14}C$]p-chloromercuribenzoic acid was observed with the C323 mutants. ADP and GTP had no effect on the binding of p-chloromercuribenzoic acid, suggesting that C323 is not directly involved in allosteric regulation. There were no differences between the two hGDH isozymes in sensitivities to mutagenesis at C323. Our results suggest that C323 plays an important role in catalysis by human GDH isozymes.